MODELS FOR ESTIMATING PRODUCTION PHASE DURATION AS A FOUNDATION FOR EFFICIENT PRODUCTION MANAGEMENT

Submitted: 20.08.2025.

Accepted: 18.09.2025.

Jelena Jovanović, Dragana Perišić

University of Kragujevac, Faculty of Technical Sciences, Svetog Save 65, 32000 Čačak, Serbia, jelena.jovanovic@ftn.kg.ac.rs

Coresponding author: Jelena Jovanović, University of Kragujevac, Faculty of Technical Sciences, Svetog Save 65, 32000 Čačak, Serbia, jelena.jovanovic@ftn.kg.ac.rs

ABSTRACT

In modern manufacturing systems, accurately defining and managing the duration of individual production phases is crucial for achieving high efficiency and reliable delivery timelines. This paper presents two methodologically grounded models for estimating the duration of the production phase: one based on the technological (ideal) cycle, and the other on the projected (realistic) cycle that incorporates organizational and logistical constraints. A case study is provided involving the packaging of a 20 mm round into a crate, part of the production program of the 'Sloboda' Co. - Cacak, Serbia.

By analyzing the flow coefficient, defined as the ratio between the actual and ideal/projected cycle durations, potential inefficiencies within the production process can be identified. The results suggest that predefining projected durations for each production phase significantly improves planning accuracy and coordination across the production flow. The proposed models serve as a practical decision-support tool within production management systems.

Keywords: production management, production phase, production cycle, flow coefficient.

INTRODUCTION AND PREVIOUS RESEARCH

In today's dynamic manufacturing environments, the ability to accurately plan, schedule, and control production processes is a critical determinant of operational efficiency and market competitiveness. The duration of each production phase plays a central role in determining delivery accuracy, resource utilization, and the overall responsiveness of the production system.

Theoretical and practical studies have increasingly focused on the application of diverse methods and techniques to reduce the duration of the production cycle. The complexity of production processes and the need for efficiency improvements have led to the development of various models, performance measures, and analytical approaches.

Aouam and Uzsoy (Aouam & Uzsoy, 2014) proposed zero-order production planning models that incorporate stochastic demand and workload-dependent lead times, providing a valuable framework for understanding uncertainties in production environments. Similarly, Huang and Yao (Huang & Yao, 2013) investigated optimal lot-sizing and scheduling in serial-type supply chains using time-varying policies, highlighting the role of planning dynamics in cycle time management.

Jovanović, Milanović, and Djukić (Jovanović et al., 2014) introduced two flow coefficients, the ratio of actual to planned cycle time and the ratio of actual to technological (ideal) cycle time—as indicators of production efficiency. Their work emphasized the importance of quantifying these relationships to identify inefficiencies and guide scheduling improvements.

Macchi (Macchi, 2008) examined performance trade-offs between flow time and throughput in complex manufacturing systems. His research provided context for evaluating flow coefficients within broader production performance strategies.

Material Flow Cost Accounting (MFCA) has also emerged as a significant tool for identifying and analyzing inefficiencies in production systems. Dierkes and Siepelmeyer (Dierkes & Siepelmeyer, 2025) developed an MFCA model that incorporates multiple inefficiency factors such as waste, rework, and recycling, enabling detailed cost assessments related to material losses.

Jovanović, J., & Perišić, D. (2025). Models for estimating production phase duration as a founation for efficient production management. *STED Conference* 14(2), 55-60.

Takakuwa, Zhao, and Ichimura (Takakuwa et al., 2014) applied simulation techniques within the MFCA framework to analyze material flows and improve both environmental and economic performance.

Research has also explored more specialized aspects of cycle time estimation and material flow. Chincholkar and Herrmann (Chincholkar & Herrmann, 2008) modeled manufacturing cycle time and throughput in flow shops affected by process drift and inspections, using queuing network approximations. Dong et al. (Dong et al., 2016) investigated material flow in aluminum extrusion, emphasizing die modifications to improve flow uniformity in complex profiles.

Efficient material handling is another key concern. Ellis et al. (Ellis et al., 2010) proposed a multi-commodity network flow model for optimizing assembly facility operations, stressing the role of layout and flow path design in reducing handling costs. In a similar vein, Gould and Colwill (Gould & Colwill, 2015) developed a framework for assessing material flow in manufacturing systems, aiming to detect inefficiencies and propose targeted improvements.

Stanisavljev, Zakin, and Istrat (Stanisavljev et al., 2014) argued that production cycle time in real-world scenarios is stochastic rather than deterministic. Their study, based on data from Serbian manufacturing enterprises, supports the use of a multi-dimensional model of production scheduling and monitoring rooted in modern organizational theory. This model emphasizes interconnectivity between production elements and the benefits of integrated planning.

On a more systemic level, Müller et al. (Müller et al., 2014) reviewed dynamic material flow analysis (MFA) methods used to model metal stocks and flows. Their work categorizes modeling approaches according to the ODD protocol (Overview, Design concepts, Details), accounting for dispersion, spatial flow dimensions, and uncertainty management. This review serves as a foundation for understanding long-term material usage trends and sustainability implications.

Sendra, Gabarrell, and Vicent (Sendra et al., 2007) adapted MFA methodology to industrial areas, particularly in Catalonia, Spain. Their research integrated material, water, and energy flows to assess resource efficiency and identify opportunities for waste reduction. By demonstrating the effectiveness of MFA indicators even with limited data, the study underscored the value of localized and tailored approaches to improving industrial sustainability.

Together, these studies form a comprehensive body of knowledge that spans from theoretical modeling of production cycles and flow dynamics to applied frameworks like MFCA and MFA. This literature highlights the importance of accurate cycle time estimation, efficiency measurement through flow coefficients, and the continuous monitoring and improvement of material flows across diverse industrial contexts.

In Table 1, the reviewed studies are organized into thematic groups, with a concise summary of the research focus for each study.

This paper addresses the need for precise estimation models of production phase duration by introducing two complementary approaches: one that reflects the ideal technological cycle, and another that incorporates realistic conditions through a projected cycle model.

The aim is to demonstrate how these models can serve as analytical tools to support effective production planning and management, with particular emphasis on identifying and minimizing inefficiencies.

A real-world case study is presented from the production program of the defense industry company *Sloboda Cacak*, focusing on the packaging phase of a 20mm caliber round. Through this example, the paper illustrates how the proposed models can be applied to complex manufacturing systems and how the analysis of the flow coefficient—defined as the ratio between actual and ideal/projected cycle times—can guide decision-making in production management.

The structure of the paper comprises the following chapters:

- Models for calculating cycle duration and flow coefficient,
- Application of the proposed model: case study and results,
- > Conclusion and future research, and
- Literature.

Jovanović, J., & Perišić, D. Models for estimating production phase duration as a founation for efficient production management. *STED Conference* 14(2), 55-60.

Table 1. Grouping of relevant studies by research focus.

Group	Authors and Year	Focus / Contribution					
	Jovanović et al. (2014)	Introduced K_p and K_t coefficients for measuring and improving production efficiency.					
1. Production Cycle Time Modeling and Scheduling Optimization	Chincholkar & Herrmann (2008)	Developed a model for estimating cycle time and throughput in flow shops with inspections.					
·	Stanisavljev et al. (2014)	Proposed a multidimensional model for stochastic production cycle scheduling and monitoring.					
2. Flow Coefficients and	Macchi (2008)	Analyzed trade-offs between flow time and throughput in complex systems.					
Performance Trade-offs	Jovanović et al. (2014)	Applied flow coefficients to real production systems for scheduling improvement.					
3. Material Flow Cost	Dierkes & Siepelmeyer (2025)	Developed an MFCA model incorporating waste, rework, and recycling inefficiencies.					
Accounting (MFCA)	Takakuwa et al. (2014)	Used simulation with MFCA to detect losses and improve flow efficiency.					
4. Material Flow Analysis (MFA) and Resource	Müller et al. (2014)	Reviewed dynamic MFA approaches for modeling metal stocks and material dispersion.					
Efficiency	Sendra et al. (2007)	Applied MFA to industrial areas to assess resource efficiency and identify inefficiencies.					
5 Mail El-	Dong et al. (2016)	Improved material flow in aluminum extrusion via die design modifications.					
5. Material Flow Optimization and Layout Design	Ellis et al. (2010)	Developed a network flow model to optimize assembly facility material handling.					
J	Gould & Colwill (2015)	Proposed a framework for assessing and improving material flow in manufacturing.					
6. Planning Models in Production and Supply	Aouam & Uzsoy (2014)	Introduced zero-order planning models with stochastic demand and variable lead times.					
Production and Supply Chains	Huang & Yao (2013)	Studied lot-sizing and scheduling in serial supply chains with time-varying policies.					

MODELS FOR CALCULATING CYCLE DURATION AND FLOW COEFFICIENT

From the perspective of theoretical considerations, industrial practice, and duration, three types of cycles can be distinguished: the technological cycle or ideal production cycle $(T_t \equiv T_{ci})$, the production (actual) cycle (T_{cs}) , and the projected production cycle (T_{cp}) , as shown in Figure 1.

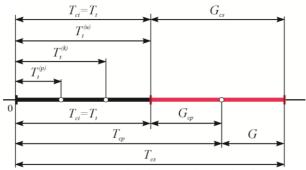


Figure 1. Types of cycles according to duration.

Jovanović, J., & Perišić, D. (2025). Models for estimating production phase duration as a founation for efficient production management. *STED Conference* 14(2), 55-60.

Technological manufacturing cycle T_i , which is also an ideal cycle T_{ci} includes the time needed for performing all n operations predicted by the technological procedure, on the products of a single lot. Production organization plays critical role in determining the technological cycle, where moves may be consecutive (Relation (1)), parallel (Relation (2)) and combined (Relation (3)), depending on the type of production consisting of a complex set of features. The combined type of work flow in manufacturing process is most often encountered in serial production. Its goal is to eliminate downtimes emerging at some workplaces (operations) at parallel type due to different duration of successive operations.

$$\begin{split} T_t^{(u)} &= q \cdot \sum_{i=1}^n t_i, \\ T_t^{(p)} &= \sum_{i=1}^n t_i + (q-1) \cdot t_{max}, \\ T_t^{(k)} &= \sum_{i=1}^n t_i + (q-1) \cdot \left(\sum_k t_k - \sum_j t_j\right), \\ (t_{k-1} < t_k \ge t_{k+1}, k = \overline{1,n}) \wedge \left(t_{j-1} \ge t_j < t_{j+1}, j = \overline{2,n-1}\right), \end{split} \tag{3}$$

Where:

t_i - total time per technological operation in norm hour/piece

q - lot size in pieces

The projected production cycle duration T_{cp} , Relation (4), aside from productive and non-productive cycle times, predicted by technological procedures, takes into account: scheduled manufacturing capacity utilization level, real manufacturing conditions per operation and scheduled losses in a cycle. The first step in the scheduling process is calculating the manufacturing cycle time duration per operation (τ_i) using Relation (5), with respect to real manufacturing conditions: number of workplaces per technological operation (r_m) , number of shifts per day (S_n) , average norm-hour execution (p_n) , and norm-set capacity per shift (q_s) . Inventories in unfinished production and losses due to quality inadequacy are included in calculations via the formulas for planning the quantity (q) of the product to be produced. In the second step, it is needed to adopt total losses in the cycle G_{cp} , and then to determine average partial losses between technological operations $\Delta \tau$.

$$T_{cp} = \tau_1 + (n-1) \cdot \Delta \tau + \sum_{p}^{k} (\tau_p - \tau_{p-1}), p: \tau_p > \tau_{p-1},$$

$$\tau_1 = q/(q_s \cdot S_n \cdot r_m \cdot p_n),$$
(5)

The flow coefficient is a measure of the efficiency of the production process. It can be calculated in two ways. The first as the ratio of the actual and technological length of the production cycle, usually according to the sequential way of moving objects of work, Relation (6). And another way as the ratio of the actual and projected length of the production cycle, Relation (7).

$$K_t = T_{cs}/T_t^{(u)}, (6)$$

$$K_p = T_{cs}/T_{cp} , \qquad (7)$$

Viewed from the angle of the manufacturing system, flow coefficient K_p has a higher use value, because the accomplished values of the cycle are correlated with scheduled (planned) values. In this context, model design becomes a cyclic process with the aim to minimize total

Jovanović, J., & Perišić, D. Models for estimating production phase duration as a founation for efficient production management. *STED Conference* 14(2), 55-60.

losses and reduce them to optimal, i.e. acceptable level. However, to compare the results with other business-manufacturing systems, from the region and broader areas, priority should be given to flow coefficient K_t because the values achieved for the cycle are compared to technological (ideal) cycle.

APPLICATION OF THE PROPOSED MODEL: CASE STUDY AND RESULTS

This chapter presents a case study involving the packaging of a 20 mm round into a crate, which is part of the production program of the 'Sloboda' Co. – Cacak, Serbia. The case study is used to demonstrate the practical applicability of the proposed models. A detailed analysis of the obtained results is also provided, highlighting key indicators of efficiency and potential areas for improvement.

The data required for calculating the technological and design length of the production cycle are presented in Figures 2 and 3 and in Table 2.

_															
	Vrsta i kvalitet	Veza: Spisa	Veza: Spisak materijala-78759				Artikal:			VOG					
jal	Tehnički uslovi					Sklop									
Materijal	Sirove dimenzije							Naziv:		Pakovanje 100 metaka u sanduk					
Ma t	Tehnički uslovi					,		Pozicija Crtež br:		D-23-86548			Poz.br: X1		(1
	Količina za 1000 kom.					latura:	Šifra			120.00	0.00		Isporuka skladištu:		
	OPERACI	JE Regbroj			RADI		উূত্র Vreme za iznadu:		1 kom. Kapacitet		C	Broi	Vreme za lk. u č.		
Bro	j Nazi	v	operacijskog postupka	RJ		Mašina, uređaj	Tehnologii Skart po obradi%	Osnovno u cmh	Dopunsko u %	Ukupno u cmh	za 7,5 č.	posla	rad.	Vreme za lk. u cmh	kumu1
1	Parafinisanje tuljka i r	adionička	78758/1	302	2 K	ada za parafinisanja M 1	-	62	20	75	10000	II-4	1	75 75	150
2	Podmazivanje metka		78758/2	302	2 Ra	adni sto-ručno	-	108	16	125	6000	II-5	1	125	275
3	Pakovanje metka i ra kontrola	dionička	78758/3	302	2 Ra	adni sto-ručno	-	108	16	125	6000	II-1	2	250	525
4	Predaja metaka		78758/4	204	4 Ra	adni sto-očno	-	43	16	50	15000	II-3	1	50	575
5	Preuzimna kontrola	Preuzimna kontrola 78758/5		204	4 Ra	adni sto-očno(režija)	-	-	-	-	-	-	-	-	-
6	Međuoperacijski tran	Međuoperacijski transport 78758/6		302	2 Ra	adionička kolica	-	54	16	63	12000	II-1	1	63	638
7	Lemljenje poklopca li	imene kutije	78758/7	302	2 E1	ektrična lemilica	-	184	20	220	3400	IV-1	1	220	858
8	Ispitivanje hermetično	osti i	78758/8	302		ređaj za ispitivanje	-	52	20	62	12000	II-1	1	62 62	982
9	Kontrola uprocesu		78758/9	302	2 Rı	učno-očno(režija)	-	-	-	-	-	-	-	-	-
10	Preventivna kontrola		78758/10	204	4 Rı	učno-očno(režija)	-	-	-	-	-	-	-	-	-
ie:				П	Т							Veza	\$2:	Ke	pija
Emene:				+	$^{+}$						H	OD	23-787	58	datum
		Kontrol:		- 1	Od ob:		Zamje Listbr. 1			1 3	78758				
Datum Datum Zamea: Ima lista 3 /8/36															

Figure 2. List of operations with work standards for the "Packing of 20mm rounds into a crate ", excerpt from the original document of the 'Sloboda' Co. Cacak, Serbia, (sheet 1).

V	rsta i kvalitet	Veza: Spisak materijala-78759					Artikal:			VOG					
	ehnički uslovi					Sklop:									
S	irove dimenzije						Naziv:		Pakova	anje 100 metaka u sanduk					
Tehnički uslovi				Pozicija Crtež br:			D-23-86548		Poz		oz.br.: X1				
			Nome	enklatura:	Šifra			120.000.00			Isporuka skladištu:				
	OPERACI	JE	Regbroj	RADI		ਲੋਂ 8 ਨੂੰ Vreme za i		za izradu	l kom.	Kapacitet	Grupa	Broi	Vreme za lk. u č.		
Broj	Nazi	v	operacijskog postupka	RJ	Mašina, uređaj	Tehnologki škart po obradi%	Osnovno u cmh	Dopunsko u %	Ukupno u cmh	za 7,5 č.	posla	rad.	Vreme za lk. u cmh	kumu	
11	Predaja hermetičnost	i	78758/11	302	Uređaj za ispitivanje	-	12	16	14	55000	II-1	1	14	1010	
12	Predaja hermetičnost	i	78758/12	204	Uređaj za ispitivanje	-	-	-	-	-	-	-	-	-	
13	Predaja hermetičnost	i	78758/13	204	Uređaj za ispitivanje hermetičnosti M 2	-	12	16	14	55000	II-4	1	14	1024	
14	Međuradionički trans	port	78758/14	302	Elektrokareta u 'S 'izvedbi	-	26	16	30	25000	II-1	2	60	1084	
15	Sušenje tuljka		78758/15	302	Električna sušnica M3	-	162	16	188	4000	II-4	1	188	1272	
16	Farbanje zaletkovano	g spoja kutije	78758/16	302	Ručno	-	52	20	62	12000	II-3	1	62	1334	
	Pri	1. Od redno	og broja ope	eracija	Ivajanje radnih listi: 11+6 (zaključno) 7+12 (zaključno)										
Т									Veza sa:		Kopija				
H				+						H	OD	23-78758		datum	
Posta	vio:	Kontrol		Od	Sobrio:	Zam-je			Listbr.	2	78758				
Datum: Datum:		Datum:	Datum			Zam-sa:			Ima lista	3		10130			

Figure 2. List of operations with work standards for the "Packing of 20mm rounds into a crate ", excerpt from the original document of the 'Sloboda' Co. Cacak, Serbia, (sheet 2).

Jovanović, J., & Perišić, D. (2025). Models for estimating production phase duration as a founation for efficient production management. *STED Conference* 14(2), 55-60.

Table 2. Parameters for technological and projected cycle calculations.

Order of operation	Time per operation t _i [cmh/piece]	Capacity in a shift q _{si} [piece/shift]	t_k	t j	S_n	r_m	p_n	p
1	75	10000			1	2	1.25	
2	125	6000	+		1	2	1.18	+
3	125	6000			1	2	1.19	
4	50	15000		+	1	2	1.2	
5	63	12000			1	3	1.16	
6	220	3400	+		1	4	1.15	+
7	62	12000			1	3	1.18	
8	14	55000			1	1	1.25	
9	14	55000		+	1	1	1.25	
10	30	25000			1	3	1.24	
11	188	4000	+		1	3	1.18	+
12	62	12000			1	4	1.19	

q = 10200 pieces $\Delta \tau = 0.5 \text{ shift} = 3.75 \text{ h}$

Using formulas (1), (3), (4), (5), (6), and (7), along with the parameters listed in Table 2, the results were obtained and are presented through expressions (8), (9), (10), and (11).

$$T_t^{(u)} = (10200 \cdot 0.01028)/7.5 = 14 \text{ shift},$$
 (8)
 $T_t^{(k)} = (0.01028 + (10200 - 1) \cdot (0.00533 - 0.00064))/7.5 = 7 \text{ shift},$ (9)
 $T_{cp} = 0.41 + (12 - 1) \cdot 0.5 + 1.33 = 7.24 \text{ shift},$ (10)
 $K_t = T_{cs}/14$, $K_p = T_{cs}/7.24$, (11)

The length of the cycle according to the first model is 14 shifts (consecutive mode) and 7 shifts (combined mode), and according to the second model 7.24 shifts (combined mode). The projected values are close to the ideal length of the cycle, of course if the combined way of movement of the objects of work is observed, so that both can be used for planning and production management. However, in the second model, that is, the model for designing the production cycle, it is also necessary to take into account the degree of utilization of machine capacities for the corresponding operations. This can be quantitatively incorporated by introducing a machine utilization coefficient, defined as the ratio between the actual machine working time and the available scheduled time for each operation. Integrating this parameter into the model enables a more realistic estimation of the production cycle duration, particularly in environments with variable workload distribution or partial equipment utilization.

Jovanović, J., & Perišić, D. Models for estimating production phase duration as a founation for efficient production management. *STED Conference* 14(2), 55-60.

CONCLUSION AND FUTURE RESEARCH

This paper presents two models for estimating the duration of the production phase cycle, serving as a foundation for efficient production management. The first model calculates the ideal (technological) cycle, while the second focuses on the projected production cycle, accounting for real-world organizational and logistical constraints. A detailed calculation is provided for the packaging phase of a 20mm round into a crate, which is part of the production program of the 'Sloboda' Co. Cacak. The length of the cycle according to the first model is 14 shifts (consecutive mode) and 7 shifts (combined mode), and according to the second model 7.24 shifts (combined mode). The projected values are close to the ideal length of the cycle, of course if the combined way of movement of the objects of work is observed, so that both can be used for planning and production management. For the calculation of the flow coefficient K_t , it is necessary to take a technological cycle that corresponds to the type of production and not, as has been the practice until now, to always take the sequential way of movement of the objects of work.

Future research should be directed towards the identification of the causes of losses and the analysis of the degree of utilization of production capacities, which should be included in the model for designing the production cycle of each operation. In addition, it is necessary to analyze the actual length of the cycle and determine the values of the flow coefficient, which is an indicator of potential inefficiency in the production process.

DECLARATIONS OF INTEREST STATEMENT

The authors affirm that there are no conflicts of interest to declare in relation to the research presented in this paper.

LITERATURE

- Aouam, T., & Uzsoy, R. (2014). Zero-order production planning models with stochastic demand and workload dependent lead times. *International Journal of Production Research*, 53(6), 1661–1679. doi: 10.1080/00207543.2014.935514
- Chincholkar, M., & Herrmann, J. W. (2008). Estimating manufacturing cycle time and throughput in flow shops with process drift and inspection. *International Journal of Production Research*, 46(24), 7057–7072. doi: 10.1080/00207540701513893
- Dierkes, S., & Siepelmeyer, D. (2025). Material flow cost accounting with multiple inefficiency factors and recycling. *Schmalenbach Journal of Business Research*, 77(1), 57–93. doi: 10.1007/s41471-024-00197-z
- Dong, Y., Zhang, C., Luo, W., Yang, S., & Zhao, G. (2016). Material flow analysis and extrusion die modifications for an irregular and multitooth aluminum alloy radiator. *The International Journal of Advanced Manufacturing Technology*, 85(5-8), 1927–1935. doi: 10.1007/s00170-016-8666-5
- Ellis, K. P., Meller, R. D., Wilck IV, J. H., Parikh, P. J., & Marchand, F. (2010). Effective material flow at an assembly facility. *International Journal of Production Research*, 48(23), 7195–7217. doi: 10.1080/00207540903186266
- Gould, O., & Colwill, J. (2015). A framework for material flow assessment in manufacturing systems. *Journal of Industrial and Production Engineering*, 32(1), 55–66. doi: 10.1080/21681015.2014.1000403
- Huang, J. Y., & Yao, M. J. (2013). On the optimal lot-sizing and scheduling problem in serial-type supply chain system using a time-varying lot-sizing policy. *International Journal of Production Research*, 51(3), 735–750. doi: 10.1080/00207543.2012.662604
- Jovanović, J. R., Milanović, D., & Djukić, R. D. (2014). Manufacturing cycle time analysis and scheduling to optimize its duration. *Strojniski vestnik Journal of Mechanical Engineering*, 60(7-8), 512–524. doi: 10.5545/sv-jme.2013.1523
- Macchi, M. (2008). Comparing performance measures for the trade-off of flow time and throughput in complex manufacturing systems. In *Lean Business Systems and Beyond* (pp. 143–150). Springer. doi: 10.1007/978-0-387-77249-3 15

- Jovanović, J., & Perišić, D. (2025). Models for estimating production phase duration as a founation for efficient production management. *STED Conference* 14(2), 55-60.
- Müller, E., Hilty, L. M., Widmer, R., Schluep, M., & Faulstich, M. (2014). Modeling metal stocks and flows: a review of dynamic material flow analysis methods. *Environmental Science & Technology*, 48(4), 2102–2113. doi: 10.1021/es403506a
- Sendra, C., Gabarrell, X., & Vicent, T. (2007). Material flow analysis adapted to an industrial area. *Journal of Cleaner Production*, 15(17), 1706–1715. doi: 10.1016/j.jclepro.2006.08.019
- Stanisavljev, S., Zakin, M., & Istrat, V. (2014). Production Cycle Time and Multi-Dimensional Model of Production Scheduling and Monitoring. *Communications in Dependability and Quality Management*, 17(4), 42–47.
- Takakuwa, S., Zhao, R., & Ichimura, H. (2014). Analysis of manufacturing systems using simulations in terms of material flow cost accounting. *International Journal of Computational Intelligence Systems*, 7(sup2), 44–51. doi: 10.1080/18756891.2014.947112