RANKING OF THE SOFTWARE PACKAGES FOR PROJECT MANAGEMENT USING INTEGRATED MCDM METHODS

Submitted: 20.08.2025.

Accepted: 16.09.2025.

Dragana Perišić, Jelena Jovanović

University of Kragujevac, Faculty of Technical Sciences, Svetog Save 65, 32000 Čačak, Serbia jelena.jovanovic@ftn.kg.ac.rs

Coresponding author: Dragana Perišić, University of Kragujevac, Faculty of Technical Sciences, Svetog Save 65, 32000 Čačak, Serbia, <u>jelena.jovanovic@ftn.kg.ac.rs</u>

ABSTRACT

In this paper, the ranking of selected software packages for project management is performed. The aim is to rank project management software packages based on predefined criteria and to show that MCDM methods can yield varying results even when analyzing the same problem. This shows that MCDM can be a useful tool for simplifying the observed problem, but the final decision should be given by the decision-maker.

When deciding using quantitative MCDM methods, it is necessary to know the criteria weights and input data that will be used for comparing alternatives. In this paper, AHP, CRITIC and CILOS methods for determining criteria weights and VIKOR, TOPSIS, COPRAS, SAW and GRA methods for alternative ranking will be used.

A brief literary review of the chosen methods will be presented, followed by a comparative analysis of the software packages. Finally, tabular and graphic representations of the alternative rankings obtained from the different methods are provided.

Keywords: project management, MCDM method, ranking, alternative, criteria.

INTRODUCTION

Software Project Management is an umbrella term used to refer to the systematic execution of processes such as planning, monitoring, staffing, and leading software projects to minimize the cost of software production while attaining high quality end product (Lee & Chen, 2022). Project managers need to choose a suitable set of tools in the marketplace to improve productivity and avoid violating time and budget constraints (Akbar et al., 2022).

When decision-making, a lot of factors can influence the final decision. Multi-criteria decision-making (MCDM) methods help with eliminating complex and unnecessary information thus making the decision process easier. The MCDM process deals with situations involving the selection, sorting and ranking of the best alternative from several options based on selected criteria with the help of mathematical models (Chakraborty et al., 2024).

The topic of selecting the optimum project management software has been widely researched and can be found in multiple papers, for example: Akbar et al., 2023; Cicibas et al., 2010; Manole & Avramescu, 2017; Milojević et al., 2023; Mitrović et al., 2011; Milin et al., 2012.

When using quantitative MCDM methods it is necessary to know the criteria weights and input data that will be used for evaluating optimal alternative. In this paper, several MCDM methods will be used for determining criteria weight and alternative ranking.

Though they help with decision-making process, MCDM methods can give different results even when criteria weight or input data is not changed. A number of papers deal with comparative analysis of the mentioned methods, such as Podvezko, 2011; Radulescu & Radulescu, 2024; Özcan & Çelik, 2021; Sari, 2018; Opricovic & Tzeng, 2004; Kokoç & Ersöz, 2019; Misra & Ray 2012; Ustinovichius, 2007.

Most approaches to determining weight criteria can be divided into subjective and objective (Žižović et al., 2020). Subjective approaches are based on determining criteria weight using information from decision-makers or experts included in the decision process and reflects the

subjective opinion and intuition of decision-makers which means that decision-makers influence the decision-making process (Žižović et al., 2020). Subjective techniques require the participation of the decision-maker in the weighting procedure (Paradowski, 2021). Contrary to subjective approaches, objective approaches are based on determining criteria weight using data that is present in the initial decision matrix and disregard the opinion of decision-makers (Žižović et al., 2020). Objective weighting methods determine criterion weights based on mathematical formulas (Paradowski, 2021).

In this paper 3 approaches are used: AHP, CRITIC and CILOS.

The Analytic Hierarchy Process (AHP) is a subjective multi-criteria decision-making approach in which factors are arranged in a hierarchic structure (Saaty, 1990). It is used to derive ratio scales from both discrete and continuous paired comparisons. These comparisons may be taken from actual measurements or from a fundamental scale which reflects the relative strength of preferences and feelings (Saaty, 1987). In AHP criteria weights are assessed subjectively given that the decision-maker can provide scaled preferences of pairs of decision criteria and alternatives with acceptable inconsistency (Aomar, 2010).

Criteria Importance Through Intercriteria Correlation (CRITIC) is an objective approach which considers both contrast intensity and conflict which are contained in the structure of the decision problem (Diakoulaki et al., 1995). This approach uses the standard deviation quantifies the contrast intensity of the corresponding criterion and the linear correlation coefficient (Diakoulaki et al., 1995).

Criterion Impact Loss (CILOS) is an objective method that is used for determining a relative impact loss experienced by the criterion of an alternative, when another criterion is chosen to be the best (Zavadskas & Podvezko, 2016). It considers the significance (impact) loss of each criterion, when one of other criteria obtains the optimal largest or smallest value.

For alternative ranking, 5 methods were used: VIKOR, TOPSIS, SAW, COPRAS and GRA. A short description of selected methods is given below.

The VIKOR method was developed as a multi-criteria decision-making method to solve a discrete decision problem with noncommensurable and conflicting criteria (Opricovic and Tzeng, 2004).

The TOPSIS method is based upon the concept that the chosen alternative should have the shortest distance from the ideal solution and the farthest from the negative-ideal solution (Hwang and Yoon, 1981).

The SAW method is one of the oldest, simplest and the most widely-used decision-making methods. This method is the basis of most MADM methods such as the PROMETHEE and AHP methods. Finding the weighted sum of the performance ratings for each alternative considering all attributes is the basic concept of the SAW method. (Taherdoost, 2023).

The COPRAS method was utilized to assess the superiority of one option over another and enables the comparison of options. The COPRAS technique systematically rates and assesses options based on their importance and utility level. This method is built on the premise of linear normalization, which allows for the direct comparison of diverse criteria by converting them into a common scale. Moreover, it incorporates the relative importance of each criterion into the decision-making process, enabling decision-makers to articulate and integrate their preferences and priorities into the analysis (Taherdoost, 2024).

The GRA method is quantitative and systematic approach, subsystem of grey system theory and most widely used in solving complex system (Patil et al, 2019). Grey System theory is focused on decision-making with partial information known and partial unknown. The information between known and unknown information is called as grey information (Patil et al, 2019).

A literary review of chosen approaches for determining criteria weights is given in Table 1, while the literary review for chosen methods for alternative ranking is in Table 2.

Perišić, D., & Jovanović, J. (2025). Ranking of the software packages for project management using integrated MCDM methods. *STED Conference* 14(2), 61-69.

Table 1. Literary review of methods for determining criteria weight.

Method	Developed by	References	
Analytic Hierarchy Process (AHP)	Saaty, T. L. (1970)	Saaty, 1970 Saaty, 1980 Saaty, 1987 Vaidya & Kumar, 2006	
Criteria Importance Through Intercriteria Correlation (CRITIC)	Diakoulaki, D. Mavrotas, G. & Papayannakis, L. (1995)	Diakoulaki et al., 1995 Žižović et al., 2020 Krishnan et al., 2021	
Criterion Impact Loss (CILOS)	Zavadskas, E. K. & Podvezko, V. (2016)	Zavadskas & Podvezko, 2016 Ayan, B. et al., 2023	

Table 2. Literary review of methods for alternative ranking.

Method	Developed by	References
Višekriterijumska Optimizacija i Kompromisno Rešenje (VIKOR)	Opricovic, S. (1998)	Opricovic, 1998 Opricovic & Tzeng, 2007 Nikolić et al., 2010
Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)	Similarity to Ideal Solution Hwang, C.L. & Yoon, K.S. (1981)	
Simple Additive Weighting (SAW)		
Complex Proportional Assessment (COPRAS)	Zavadskas, E. K., Kaklauskas, A. & Sarka, Z. (1994)	Zavadskas et al., 1994 Popovic et al., 2012 Taherdoost, 2024
Grey Relational Analysis (GRA)	Ju-Long, D. (1982)	Ju-Long (1982) Patil et al. (2019)

MATERIAL AND METHODS OF WORK

There are many software packages used for project management. Given the large number of software packages, the list of a few selected software packages was made. Software packages are selected based on previous papers involving project management software comparison (Cicibas et al., 2010; Manole & Avramescu, 2017; Milin et al., 2012; Milojević et al., 2023; Mitrović et al. 2011).

When making comparisons certain criteria were used, such as tasks (ability to create and follow tasks), resource management (ability to schedule, allocate and optimize resources), projects (ability to plan and follow progress of project) and data & analytics (ability to follow performance). Each criterion has its' subcriteria. In Table 3 and 4 comparative analysis of the software packages is shown.

Table 3. Comparative analysis of the project management software packages (https://www.g2.com/).

Group	Feature	ProjectManager.com	Microsoft Project	Wrike	Asana	BaseCamp
	Scheduling	+	+			
Resource	Definition	+	+			
Management	Allocation		+			
	Optimization		+			
Data &	Data Consolidation		+			
Analytics	Performance		+			

Perišić, D., & Jovanović, J. (2025). Ranking of the software packages for project management using integrated MCDM methods. *STED Conference* 14(2), 61-69.

Table 4. Comparative analysis of the project management software packages (continuation)

Group	Feature	ProjectManager.com	Microsoft Project	Wrike	Asana	BaseCamp
	Planning	+	+	+	+	+
	Project Map	+	+	+	+	
	Gantt	+	+			+
Projects	Calendar View	+	+	+	+	+
	Views	+		+	+	+
	Templates				+	+
	Dashboards	+		+		+
	Baselining/KPIs					+
	Creation &Assignment	+	+	+	+	+
	Due Dates	+	+	+	+	+
	Task Prioritization	+	+	+	+	+
Tasks	To-Do Lists	+	+	+	+	+
	Dependencies	+	+	+	+	
	Mass Updates			+	+	
	Drag & Drop	+		+	+	+
	Recurring Tasks	+		+	+	

RESULTS AND DISCUSSION

In Table 5 decision matrix is presented. For simplicity and a better view of the table, criteria are presented as C, where: C1 – Ease-of-use; C2 – Customer support; C3 – Value for money; C4 – Functionality; C5 – Price. Values for criteria Ease of use, Customer support, Value for money and Functionality are given on a scale from 1 to 5, where 1 depicts the lowest score and 5 the highest. Value for criterion Price is given based on the Premium/Pro package price, since every software offers multiple packages with different pricing. Alternatives are presented as A, where: A1 – Microsoft Project; A2 – Asana; A3 – BaseCamp; A4 – ProjectManager.com; A5 – Wrike.

Table 5. Decision matrix (https://www.softwareadvice.com/).

	Ease of use [1-5]	Customer support [1-5]	Value for money [1-5]	Functionality [1-5]	Price [\$/user per month]
Criteria requirement	max	max	max	max	min
Microsoft Project	4.1	4.1	4.1	4.4	30
Asana	4.4	4.3	4.4	4.4	24.99
BaseCamp	4.3	4.3	4.2	4.2	15
ProjectManager.com	4	3.9	3.7	3.9	26
Wrike	4.1	4.3	4.2	4.3	25

First, it is necessary to determine criteria weights. Since the AHP method is subjective and requires input from the decision-maker. In Table 6 pairwise comparison matrix for AHP method is shown. Values are given based on the authors' preferences and Saaty's scale.

Table 6. Pairwise comparison matrix.

Criteria	<i>C1</i>	C2	<i>C3</i>	C4	C5
C1	1	5	2	3	7
C2	1/5	1	1/4	1/6	1
C3	1/2	4	1	2	4
C4	1/3	6	1/2	1	3
C5	1/7	1	1/4	1/3	1

The criteria weights that are obtained by the chosen approach are given in Table 7. It can be seen that for the AHP method, the most important criterion is Ease of use, yet the most important criterion for CRITIC and CILOS methods is Functionality. It can also be seen that the criteria weights for the CRITIC and CILOS methods are not the same. This can lead to different alternative rankings even when an alternative ranking method is the same.

Table 7. Criteria weights determent by the chosen methods.

	C1	C2	<i>C3</i>	C4	C5
AHP	0.431	0.060	0.255	0.194	0.060
CRITIC	0.16	0.15	0.12	0.25	0.32
CILOS	0.09	0.17	0.07	0.64	0.03

In Table 8 rank of the alternatives is given when criteria weights are determined by the AHP method. It can be seen that the ranking of alternatives using VIKOR, SAW and GRA methods is the same. Same can be seen when TOPSIS and COPRAS methods are used. In Figure 1 graphic representation of ranking is presented.

Table 8. Rank of the alternatives when criteria weights are determined by the AHP method.

$w_i = (0.431; 0.060; 0.255; 0.194; 0.060)$							
	VIKOR	TOPSIS	COPRAS	SAW	GRA		
A1	4	4	4	4	4		
A2	1	2	2	1	1		
A3	2	1	1	2	2		
A4	5	5	5	5	5		
A5	3	3	3	3	3		

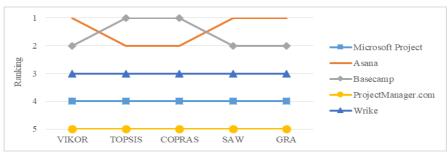


Figure 1. Software Ranking Comparison Using AHP-Derived Criteria Weights.

In Table 9 rank of the alternatives is given when criteria weights are determined by the CRITIC method. It can be seen that the ranking of alternatives using VIKOR, COPRAS and SAW methods is the same. It can also be seen that alternative ranking using TOPSIS and GRA methods differentiates from others. In Figure 2 graphic representation of ranking is presented.

Table 9. Rank of the alternatives when criteria weights are determined by the CRITIC method.

$w_i = (0.16;$	0.15; 0.12; 0.25; 0.32)				
	VIKOR	TOPSIS	COPRAS	SAW	GRA
A1	4	5	4	4	4
A2	2	2	2	2	1
A3	1	1	1	1	2
A4	5	4	5	5	5
A5	3	3	3	3	3

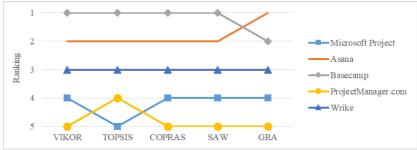


Figure 2. Software Ranking Comparison Using CRITIC-Derived Criteria Weights.

In Table 10 rank of the alternatives is given when criteria weights are determined by the CILOS method. It can be seen that the ranking of alternatives using VIKOR and TOPSIS methods is the same. It can be seen that alternative ranking using COPRAS, SAW and GRA methods differ from others. In Figure 3 graphic representation of ranking is presented.

Table 10. Rank of the alternatives when criteria weights are determined by the CILOS method.

$w_i = (0.09; 0.00)$	0.17; 0.07; 0.64; 0.03)				
	VIKOR	TOPSIS	COPRA S	SAW	GRA
A1	2	2	3	2	2
A2	1	1	1	1	1
A3	4	4	2	3	4
A4	5	5	5	5	5
A5	3	3	4	4	3

Figure 3. Software Ranking Comparison Using CILOS-Derived Criteria Weights.

As the previous tables demonstrate, alternative ranking methods yield varying results even when criteria weights are consistent. This discrepancy arises from the diverse normalization techniques and mathematical methodologies utilized.

CONCLUSIONS

This study demonstrates the significant impact of MCDM method selection on the ranking of alternatives in the context of project management software evaluation. MCDM methods are powerful tools for decision-making. Even though MCDM tends to be objective, they still need decision-maker input thus introducing subjectivity and affecting alternative ranking.

Different criteria weights are expected given the fact that we used three different approaches. From our perspective, the Analytic Hierarchy Process (AHP) method offers the most realistic weighting approach in this domain because it directly incorporates decision-maker preferences, rather than relying solely on mathematical ratios between criterion values.

The lack of consensus in alternative rankings across these different weighting methods underscores a crucial point: there's no single "best" answer. Instead, the most robust solution emerges from a thorough comparison and synthesis of results.

Our findings indicate that Asana and Basecamp are overall best alternatives thus the best solution for the observed problem. Specifically, Asana and Basecamp share the first place when the criteria weights are determent using AHP method. Basecamp is considered overall best when the criteria weights are determent using CRITIC method, while Asana is the best alternative according to all methods used when the criteria weights are determent using CILOS method.

These results confirm the fact that MCDM methods provide invaluable insights into optimal alternatives based on given criteria. Still, it is advised that decision-makers make final decision using given information. As shown in the paper, different MCDM methods can give different rankings of alternatives. The choice of criteria weighting method significantly influences the final outcome.

DECLARATIONS OF INTEREST STATEMENT

The authors affirm that there are no conflicts of interest to declare in relation to the research presented in this paper.

LITERATURE

- Akbar, S., Ahmad, I., Khan, R., Lopes, I. O., & Ullah, R. (2022). Multi-skills resource constrained and personality traits based project scheduling. *IEEE Access*, 10, 131419-131429. doi: 10.1109/ACCESS.2022.3229867
- Akbar, S., Ullah, R., Khan, R., Asghar, I., Zubair, M., & Zheng, Z. (2023). A Multi-Criteria Decision-Making Framework for Software Project Management Tool Selection. *9th International Conference on Computer Technology Applications*. 184-191. doi: 10.1145/3605423.3605454
- Al-Aomar, R. (2010). A combined AHP-ENTROPY method for deriving subjective and objective criteria weights. *The International Journal of Industrial Engineering: Theory, Applications and Practice*, 17(1), 12-24.
- Ayan, B., Abacıoğlu, S., & Basilio, M. P. (2023). A comprehensive review of the novel weighting methods for multi-criteria decision-making. *Information*, 14(5), 285. doi: 10.3390/info14050285
- Chakraborty, S. (2022). TOPSIS and Modified TOPSIS: A comparative analysis. *Decision Analytics Journal*, 2, 100021. doi: 10.1016/j.dajour.2021.100021
- Chakraborty, S., Chatterjee, P., & Protim Das, P. (2024). *Multi-Criteria Decision-Making Methods in Manufacturing Environments: Models and Applications*. United States of America: Apple Academic Press. ISBN: 978-1-00337-703-0
- Cicibas, H., Unal, O., & Demir, K. A. (2010). A Comparison of Project Management Software Tools (PMST). *International Conference on Software Engineering Research and Practice, SERP 2010.* 560-565.
- Diakoulaki, D., Mavrotas, G., & Papayannakis, L. (1995). Determining Objective Weights in Multiple Criteria Problems: The CRITIC method. *Computers & Operations Research*, 22(7), 763-770. doi: 10.1016/0305-0548(94)00059-H
- G2 Business Software Reviews. Retrieved April 15, 2025, from https://www.g2.com/
- Goodridge, W. S. (2016). Sensitivity analysis using simple additive weighting method. *International Journal of Intelligent Systems and Applications*, 8(5), 27. doi: 10.5815/ijisa.2016.05.04
- Hwang, C.L., Yoon, K. (1981). *Multiple Attribute Decision-making: methods and applications*. doi: 10.1007/978-3-642-48318-9; ISBN: 978-3-642-48318-9
- Ju-Long, D. (1982). Control problems of grey systems. *Systems & control letters*, 1(5), 288-294. doi: 10.1016/S0167-6911(82)80025-X

- Perišić, D., & Jovanović, J. (2025). Ranking of the software packages for project management using integrated MCDM methods. *STED Conference* 14(2), 61-69.
- Kokoç, M., & Ersöz, S. (2019). Comparison of AHP-TOPSIS and AHP-VIKOR Methods in Product Selection in terms of Inventory Management. *International Journal of Engineering Research and Development*, 11(1), 163-172. doi: 10.29137/umagd.391359
- Krishnan, A. R., Kasim, M. M., Hamid, R., & Ghazali, M. F. (2021). A modified CRITIC method to estimate the objective weights of decision criteria. *Symmetry*, *13*(6), 973. doi: 10.3390/sym13060973
- Lee, J. C., & Chen, C. Y. (2022). Exploring the effects of team coordination and power distance on effective software process tailoring: a theoretical perspective. *Information Technology & People*, 35(3), 1009-1028. doi: 10.1108/ITP-02-2020-0063
- MacCrimmon, K. R. (1968). *Decisionmaking Among Multiple-Attribute Alternatives: A Survey and Consolidated Approach*. California: The RAND Corporation
- Manole, M., & Avramescu, M. Ş. (2017). A Comparative Analysis of Agile Project Management Tools. *Economy Informatics*, 17(1), 26-31.
- Milin, D., Ćosić, I., Morača, S., & Tešić, Z. (2012). Primena softverskih alata za upravljanje projektima u Srbiji [Software Tools Application for Making Projects in Serbia]. Inforteh-Jahorina. 11, 829-832.
- Milojević, D., Macuzic, I., Djordjevic, A., Savković, M., & Djapan, M. (2023). Comparative Analysis of Software Tools for Agile Project Management. 785-793. ISBN 978-86-6335-104-2
- Misra, S. K., & Ray, A. (2012). Comparative Study on Different Multi-Criteria Decision Making Tools in Software project selection scenario. *International Journal of Advanced Research in Computer Science*, 3(4), 172-178. ISSN: 0976-5697
- Mitrović, Z., Obradović, V., & Mihić, M. (2011). Uporedna analiza softvera za upravljanje projektima [Comparative Analysis of Project Management Softwares]. *VIII Skup privrednika i naučnika SPIN*, 2011-2020. 282-288.
- Nikolić, M., Radovanović, L., Desnica, E., & Pekez, J. (2010). Primena metode VIKOR za izbor strategije održavanja. *Tehnička dijagnostika*, 9(4), 25-32. UDC: 620.17:621.791.1/982.540
- Ok, E. (2025). Comparative Analysis of AHP and Other Multi-Criteria Decision-Making Methods in Investment Project Evaluation.
- Opricovic, S. (1998). *Multicriteria optimization of civil engineering systems*. Belgrade: Faculty of civil engineering. ISBN: 86-80049-82-4
- Opricovic, S., & Tzeng, G. H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. *European journal of operational research*, 156(2), 445-455. doi: 10.1016/S0377-2217(03)00020-1
- Opricovic, S., & Tzeng, G. H. (2007). Extended VIKOR method in comparison with outranking methods. *European journal of operational research*, 178(2), 514-529. doi:10.1016/j.ejor.2006.01.020
- Özcan, S., & Çelik, A. K. (2021). A comparison of TOPSIS, grey relational analysis and COPRAS methods for machine selection problem in the food industry of Turkey. *International Journal of Production Management and Engineering*, 9(2), 81-92. doi:10.4995/ijpme.2021.14734
- Paradowski, B., Shekhovtsov, A., Bączkiewicz, A., Kizielewicz, B., & Sałabun, W. (2021). Similarity analysis of methods for objective determination of weights in multi-criteria decision support systems. *Symmetry*, *13*(10), 1874. doi: 10.3390/sym13101874
- Patil, A., Walke, G., & Gawkhare, M. (2019). Grey relation analysis methodology and its application. *Research Review International Journal of Multidisciplinary*, 4(2), 409-411. doi: 10.5281/zenodo.2578088
- Podvezko, V. (2011). The comparative analysis of MCDA methods SAW and COPRAS. *Inzinerine Ekonomika-Engineering Economics*, 22(2), 134-146. doi: 10.5755/j01.ee.22.2.310
- Popovic, G., Stanujkic, D., & Stojanovic, S. (2012). Investment project selection by applying COPRAS method and imprecise data. *Serbian Journal of Management*, 7(2), 257-269. doi: 10.5937/sjm7-2268

- Perišić, D., & Jovanović, J. (2025). Ranking of the software packages for project management using integrated MCDM methods. *STED Conference* 14(2), 61-69.
- Radulescu, C. Z., & Radulescu, M. (2024). A hybrid group multi-criteria approach based on SAW, TOPSIS, VIKOR, and COPRAS methods for complex IoT selection problems. *Electronics*, *13*(4), 789. doi: 10.3390/electronics13040789
- Saaty, R. W. (1987). The analytic hierarchy process—what it is and how it is used. *Mathematical modelling*, 9(3-5), 161-176. doi: 10.1016/0270-0255(87)90473-8
- Saaty, T. L. (1980). The Analytic Hierarchy Process Planning, Priority Setting, Resource Allocation. United States of America: McGraw-Hill Inc. ISBN 0-07-054371-2
- Saaty, T. L. (1990). How to make a decision: the analytic hierarchy process. *European journal of operational research*, 48(1), 9-26. doi: 10.1016/0377-2217(90)90057-I
- Sari, F. (2018). Comparison of TOPSIS and VIKOR multi criteria decision analysis techniques. *Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi*, 6, 825-831. doi: 10.15317/Scitech.201
- Software Advice. Retrieved April 15, 2025, from https://www.softwareadvice.com/
- Taherdoost, H. (2023). Analysis of Simple Additive Weighting Method (SAW) as a Multi-Attribute Decision-Making Technique: A Step-by-Step Guide. *Journal of Management Sciences & Engineering Research*, 6(1), 21-24. doi: 10.30564/jmser.v6i1.5400
- Taherdoost, H. (2024). A Comprehensive Guide to the COPRAS method for Multi-Criteria Decision-making. *Journal of Management Science & Engineering Research*. 7(2), 1-14. doi: 10.30564/jmser.v7i2.6280
- Ustinovichius, L. (2007). Methods of determining objective, subjective and integrated weights of attributes. *International journal of management and decision making*, 8(5-6), 540-554.
- Vaidya, O. S., & Kumar, S. (2006). Analytic hierarchy process: An overview of applications. *European Journal of operational research*, 169(1), 1-29. doi: 10.1016/j.ejor.2004.04.028
- Zavadskas, E. K., & Podvezko, V. (2016). Integrated determination of objective criteria weights in MCDM. *International Journal of Information Technology & Decision-making*, 15(2), 267-283. doi: 10.1142/S0219622016500036
- Zavadskas, E. K., Kaklauskas, A., & Šarka, V. (1994). The new method of multicriteria complex proportional assessment of projects. *Vilnus Techical University Institute of Technological and Ecomic Development (ITED)*, 3,131-139. ISBN: 9986-05-078-2
- Žižović, M., Miljković, B., & Marinković, D. (2020). Objective methods for determining criteria weight coefficients: A modification of the CRITIC method. *Decision-making: Applications in Management and Engineering*, 3(2), 149-161. doi: 10.31181/dmame2003149