
ORIGINAL SCIENTIFIC PAPER Submitted: 22.08.2025.

DOI: 10.63395/STEDConf14022025937S201 Accepted: 22.09.2025.

STED 2025, Trebinje, June, 12-15, 2025. Republic of Srpska, B&H 201

PERFORMANCE COMPARISON OF VARIOUS DATABASE TYPES IN

REACT NATIVE APPLICATIONS

Dijana Stojić, Dejan Vujičić, Đorđe Damnjanović, Marina Milošević

University of Kragujevac, Faculty of Technical Sciences Čačak, Svetog Save 65, 32102 Čačak,

Serbia, dijana.stojic@ftn.kg.ac.rs, dejan.vujicic@ftn.kg.ac.rs, djordje.damnjanovic@ftn.kg.ac.rs,

marina.milosevic@ftn.kg.ac.rs

Coresponding author: Dijana Stojić, University of Kragujevac, Faculty of Technical Sciences

Čačak, Svetog Save 65, 32102 Čačak, Serbia, dijana.stojic@ftn.kg.ac.rs

ABSTRACT

In the modern digital age, mobile devices have become an indispensable part of everyday life.

With the growing volume of data we handle daily, the speed of data loading and access becomes a

crucial factor for the efficient operation of mobile applications. Large datasets are becoming
increasingly common, such as, for example, the German collocation dictionary. Given that mobile

devices use different operating systems, such as Android and iOS, there is an increasing need for

tools that enable the development of cross-platform applications from a single codebase. React

Native, as a popular open-source framework, provides exactly this solution. This paper tested the

loading of data from the dictionary using React Native applications. This data loading was

performed in four ways: using AsyncStorage, SQLite, TinyBase, and Realm databases. A different

number of rows was loaded, and the loading speed was compared.

Keywords: Android, database, iOS, performance testing, React Native.

INTRODUCTION

In today's digital age, mobile devices have become an essential part of everyday life. With the

growing volume of data handled by mobile applications, performance – especially data loading

speed and access time – has become a crucial factor. Traditionally, developing mobile applications

required writing separate codebases for Android (using Java or Kotlin) and iOS (using Swift or

Objective-C), which significantly increased the time, cost, and complexity of development and

maintenance (Alsaid et al., 2021). This is overcome by using React Native, a widely used open-

source framework that enables the development of cross-platform applications from a single

codebase, thereby increasing development efficiency.

This study investigates how different types of databases affect performance within the React

Native environment, with a particular focus on working with large datasets such as a German
collocation dictionary. The experimental part of the work utilizes four different data management

technologies: AsyncStorage, SQLite, TinyBase, and Realm. As part of the comparison, the

performance of these solutions was analyzed depending on the size of the dataset, specifically the

number of rows, with particular focus on measuring the time required to load and display data

within the application.

The aim of the study is to determine which technology offers the best performance in the

context of React Native applications when working with local data and to provide guidelines for

choosing a database depending on the specific requirements of the project.

REACT NATIVE

React Native is an open-source framework developed by Meta (formerly Facebook) that

enables developers to build mobile applications for both iOS and Android platforms using a single
codebase. It is based on JavaScript and leverages the popular React library for building user

interfaces. This approach significantly reduces development time and cost, as there is no need to

maintain separate codebases for different platforms. One of the key features of React Native is its

ability to render components using native APIs, providing a look and feel that is consistent with

mailto:dejan.vujicic@ftn.kg.ac.rs
mailto:marina.milosevic@ftn.kg.ac.rs
mailto:dijana.stojic@ftn.kg.ac.rs

Stojić, D., et al. (2025). Performance comparison of various datebase types in react native

applications. STED Conference 14(2), 201-208.

202 STED 2025, Trebinje, June, 12-15, 2025. Republic of Srpska, B&H

platform-specific user experiences, as illustrated in Figure 1. Unlike hybrid frameworks that rely

on WebView, React Native applications run natively, which typically results in better performance

and smoother animations. React Native also supports a wide range of third-party libraries and

native modules, allowing developers to integrate device specific features like camera access, GPS,

and push notifications with ease. Its hot reloading functionality speeds up the development process

by allowing developers to see changes in real time without rebuilding the entire app. Overall, React

Native is a powerful and flexible solution for cross-platform mobile development, making it a

popular choice among startups and large companies alike that aim to reach a broader audience with
a unified development effort (Eisenman, 2015).

Figure 1. Examples of views used in Android and iOS applications (React Native – Native Components,

2025).

Expo is used for developing React Native applications. Expo has been actively involved in
the development of React Native from the very beginning. Expo released the first community

libraries just a few months after the release of React Native in 2015. In the same year, Expo

developed the React Native Directory – a directory where React Native libraries can be searched

and explored.

In 2016, Expo participated in organizing the first React Conf event and was the first

independent developer community to support the release of a React Native version. Expo helped

add async functions to React Native as well as update the new architecture in the open-source

project (Saarikoski, 2025).

In 2024, Expo became the first official React Native framework for application development

(React Conf, 2024).

Expo is a toolchain built around React Native to help developers start their projects quickly.
Expo provides a set of tools and services to develop, build, deploy, test or even run simulators on

the specific platform from the same codebase. Specifically, it offers a collection of ready solutions

such as device accelerometer, camera, notifications, geolocation, etc. (Van, 2020).

STORAGE SYSTEMS AND DATABASES

AsyncStorage is a local data storage system used in React Native applications. It allows

developers to store data on the user’s device in the form of key-value pairs. The storage

mechanism is asynchronous, meaning that data operations such as saving or retrieving run in the

background without interrupting the main execution thread of the application. This contributes to

better app performance and a smoother user experience (Huynh, 2023).

Stored data in AsyncStorage remains persistent across app restarts, making it suitable for

maintaining state, user preferences, session tokens, or other small pieces of data that need to be
retained between uses. However, it's important to note that AsyncStorage does not encrypt data,

which makes it easily accessible but also raises security concerns for sensitive information.

Stojić, D., et al. (2025). Performance comparison of various datebase types in react native

applications. STED Conference 14(2), 201-208.

STED 2025, Trebinje, June, 12-15, 2025. Republic of Srpska, B&H 203

Due to its simplicity and ease of use, AsyncStorage is often chosen for basic offline data

persistence in React Native apps, particularly when working with smaller datasets that do not

require complex querying or relational structures.

SQLite is a lightweight, relational database engine commonly used in mobile applications for

local data storage. In React Native, SQLite allows apps to store structured data directly on the

device in a persistent and efficient way. It uses SQL queries to create, read, update, and delete data

within local database files (Gaffney, 2022).

This approach is especially useful for applications that require managing moderate amounts
of data offline, such as note-taking apps, inventories, or personal information managers. SQLite

supports complex queries and relationships between data, providing more flexibility than simple

key-value storage systems (Kreibich, 2010).

Because the database is stored locally, React Native apps using SQLite can operate without

an internet connection, ensuring data availability at all times. Although it may have some

limitations regarding concurrent writes and schema migrations, SQLite remains a reliable solution

for many mobile apps needing fast and persistent local storage (Bhosale, 2015).

TinyBase is a small and fast database library for managing state and data in JavaScript apps,

including React Native. It provides a flexible in-memory data store focused on ease of use and

performance, rather than persistent storage (Danielsson, 2016).

In React Native, TinyBase helps efficiently handle complex state and relational data during
app runtime. It supports tables, records, and relationships, similar to relational databases but

without slow disk operations.

Its lightweight design and simple API make it easy to integrate with React Native’s

component lifecycle, enabling automatic updates and smooth rendering when data changes.

While TinyBase doesn’t offer built-in persistent storage, it can be used alongside tools like

AsyncStorage or SQLite to save and load data as needed. Overall, TinyBase is a useful tool for

managing app state and complex data with high performance (TinyBase, 2025).

Realm is a mobile database built for modern apps, offering an easy-to-use, high-performance,

and offline-first solution. Unlike traditional databases, it uses an object-oriented model, letting

developers work with native objects instead of SQL queries (Danielsson, 2016).

In React Native, Realm efficiently manages complex data locally and supports reactive
updates, ensuring UI components sync automatically when data changes. It stores data in a zero-

copy format, improving read/write speeds, and offers features like encryption, synchronization

with backend servers, and fine-grained permissions.

Realm handles complex relationships and queries without losing performance, integrates well

with React Native’s lifecycle, and supports transactions for data integrity. Although it requires

setup and can increase app size, its benefits make it ideal for data-heavy mobile apps (Andersson,

2018).

In summary, Realm provides a powerful, scalable, and secure local database with real-time

updates and synchronization, perfect for modern mobile development (Cobley, 2022).

IMPLEMENTATION

The motivation for testing various mobile database solutions stemmed from the development
of a German collocation dictionary within the scope of the DeSKoll project (DeSKoll, 2025). To

streamline development across platforms and avoid maintaining separate codebases for iOS and

Android, the React Native framework was selected.

For experimental purposes, a simplified English word dictionary was utilized (OPTED-

Dictionary, 2025), consisting of four columns: Word, Count, POS (part of speech), and Definition.

In order to reduce complexity during testing, only the Word and Definition columns were

considered, while the specific semantic content of the data was not of significance.

Datasets containing 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000, and 100000 rows

were loaded using four distinct methods. The upper limit of 100,000 rows was chosen based on the

projected maximum size of the final collocation dictionary. The dictionary will have significantly

fewer rows but more columns, so these measurements will be relevant.

Stojić, D., et al. (2025). Performance comparison of various datebase types in react native

applications. STED Conference 14(2), 201-208.

204 STED 2025, Trebinje, June, 12-15, 2025. Republic of Srpska, B&H

Identical user interface layouts were developed for each of the four data loading approaches,

ensuring consistency across test scenarios.

All tests were performed in the Expo Go environment, utilizing an iPhone simulator and an

Android emulator to ensure cross-platform compatibility. The layouts used for testing are

presented in Figure 2.

(a) (b)

Figure 2. Application layout in React Native for testing on simulator for (a) iOS, (b) Android.

The first loading method uses AsyncStorage for local storage and display of the dictionary.

When the application starts, the useEffect hook is triggered, performance measurement begins, and

the app attempts to load the dictionary from memory. If data exists, it is parsed and set to state,

then displayed using a FlatList. The data flow diagram from the AsyncStorage local database to the
screen is shown in Figure 3.

Figure 3. Data flow: AsyncStorage → Screen (React Native).

In the second approach, an SQLite database is used for storing and displaying the dictionary.

Data from the SQLite database is loaded using the expo-sqlite API through the useSQLiteContext

hook. When the screen is focused, the loadData function is triggered, executing the SQL query

SELECT * FROM Dictionary to retrieve all entries from the dictionary table. The query results are

stored in the component’s state (data), which automatically triggers the rendering of the list. The

time taken to load the data is measured using Date.now() and displayed to the user. The dictionary
is displayed using the FlatList component, which efficiently renders each word and its definition as

a list on the screen. The data flow diagram from the SQLite local database to the screen is shown in

Figure 4.

Stojić, D., et al. (2025). Performance comparison of various datebase types in react native

applications. STED Conference 14(2), 201-208.

STED 2025, Trebinje, June, 12-15, 2025. Republic of Srpska, B&H 205

Figure 4. Data flow: SQLite → Screen (React Native).

 The third approach combines an SQLite database with the TinyBase library for efficient data

management and display. At the start, the Dictionary.db database is copied into the app's working

directory. After that, the SQLiteProvider enables access to the database using expo-sqlite. The

DataLoader component executes the SQL query SELECT Word, Definition FROM Dictionary to

retrieve all words and their definitions. The resulting data is then written into the TinyBase store,

where each word is used as a row ID and the definition as a cell. Once the data is loaded, the

TinyBase context (TinyBaseProvider) wraps the entire app to allow access to the data via TinyBase
hooks. The Dictionary component uses useRowIds to get all word keys, while DictionaryItem uses

useCell to display the definition for each word. The data is rendered using FlatList, allowing for

performant and dynamic display of dictionary items within the user interface. The data flow

diagram from the SQLite local database throw TinyBase library to the screen is shown in Figure 5.

Figure 5. Data flow: SQLite → TinyBase → Screen (React Native).

The fourth method uses Realm, a high-performance local database, for storing and displaying

the dictionary within the React Native application. The loading process starts by checking whether

the Realm file (Dictionary.realm) exists in the local documentDirectory folder. If it does not exist,

the database is automatically copied from the assets directory using the expo-file-system and expo-

asset libraries. This process is automated in the copyRealmFileIfNeeded method, enabling the use

of a pre-populated database. After copying, the application uses the RealmService class to open the

database and initialize the schema (DictionarySchema). The data is then retrieved directly from the

database and displayed using the FlatList component. The data flow diagram from the Realm local
database to the screen is shown in Figure 6.

Figure 6. Data flow: Realm → Screen (React Native).

RESULTS AND DISCUSSION

To determine the most suitable solution for local data storage in mobile applications built

with the React Native framework, a comprehensive performance evaluation was carried out
involving four widely used database systems: SQLite, AsyncStorage, TinyBase, and Realm. The

goal was to assess efficiency in handling different data set sizes, with a focus on load speed.

The performance tests were conducted on both an iOS simulator and an Android emulator,

providing cross-platform insights into how each database behaves under similar conditions. The

Stojić, D., et al. (2025). Performance comparison of various datebase types in react native

applications. STED Conference 14(2), 201-208.

206 STED 2025, Trebinje, June, 12-15, 2025. Republic of Srpska, B&H

evaluation involved loading predefined datasets of increasing sizes, specifically: 100, 200, 500,

1000, 2000, 5000, 10000, 20000, 50000, and 100000 records. These datasets were designed to

simulate real-world application usage, ranging from simple to complex data structures.

For each test scenario, the time required to load the dataset into memory was measured and

recorded in milliseconds (ms). To ensure reliability and minimize the impact of potential

background activity or fluctuations in the simulator/emulator environments, each test was repeated

multiple times, and average values were calculated.

The numerical results of testing on the iOS simulator are shown in Table 1, and the graphic
representation is presented in Figure 6.

Table 1. Measurement of the data load time in iOS simulator

Inputs SQLite (ms) AsyncStorage (ms) TinyBase (ms) Realm (ms)

100 36 3 23 1
200 41 3 37 2
500 47 5 50 3
1000 55 6 102 4
2000 59 6 191 9

5000 61 11 302 20
10000 68 18 352 46
20000 88 86 380 84
50000 141 238 1781 226
100000 224 437 3364 466

Figure 6. Measurement of the data load time in iOS simulator.

Similar results were obtained during testing on both the Android emulator and the iOS

simulator, indicating consistent performance across platforms. The numerical results of testing on

the Android emulator are shown in Table 2, and the graphical representation is presented in Figure

7.

Table2. Measurement of the data load time in Android emulator.

Inputs SQLite (ms) AsyncStorage (ms) TinyBase (ms) Realm (ms)

100 40 5 28 1

200 45 6 41 2
500 51 7 55 3
1000 62 8 113 5
2000 68 8 283 10
5000 82 11 319 21
10000 103 17 384 50
20000 148 143 434 86
50000 273 382 1783 224

100000 490 621 3526 578

Stojić, D., et al. (2025). Performance comparison of various datebase types in react native

applications. STED Conference 14(2), 201-208.

STED 2025, Trebinje, June, 12-15, 2025. Republic of Srpska, B&H 207

SQLite provides stable performance on both platforms. The loading times of small amounts

of data are slow compared to other databases, but the growth is relatively uniform with the increase

in the amount of data. this indicates stable and predictable performance.

AsyncStorage is very efficient for small to medium datasets, but not suitable for larger

amounts of data. The responses are extremely fast for small amounts of data, however, after 20,000

entries there is a sudden spike, which indicates exponential growth and loss of efficiency with

larger datasets.

Figure 7. Measurement of the data load time in Android emulator.

TinyBase is not optimized for working with large datasets and shows extremely poor

performance on both platforms. The performance is significantly weaker even with small datasets,

and at 1,000 entries the growth is large, while at 20,000 entries it is exponential, which makes it

unusable for large amounts of data.
Realm has the best performance for small amounts of data, however, performance degrades

as the dataset grows. The growth is relatively linear up to 10,000 entries, after which there is a

noticeable slowdown.

From the obtained results it can be concluded that Realm and AsyncStorage are the fastest for

small datasets. The most stable performance was shown when using SQLite, with a uniform and

predictable increase in loading time. The worst performance was obtained with TinyBase, with

sudden exponential growth and very long times for large datasets.

CONCLUSIONS

The comparison of different types of data storage in React Native applications shows that the

optimal choice of storage is highly context-dependent. There is no single solution that works best

in every situation.
The choice depends on the specific requirements of the application, the expected data

volumes, and the targeted platforms. For applications with predictable data sizes up to 10,000

entries, AsyncStorage represents an optimal choice due to its simplicity and good performance. For

applications that require scalability and handling large amounts of data, SQLite is the only solution

that provides consistent performance across all scenarios. Realm can be used in specific cases

where its advantages for smaller data volumes can be leveraged, but it requires careful testing and

monitoring. TinyBase is not recommended for production applications due to consistently poor

performance on both platforms.

In summary, developers should carefully evaluate their application’s requirements—such as

data size and complexity, need for local storage, performance, and implementation simplicity – to

choose the most appropriate solution.
Further studies should concentrate on evaluating performance using real-world datasets and

diverse operation types, along with examining how factors like memory usage, battery

Stojić, D., et al. (2025). Performance comparison of various datebase types in react native

applications. STED Conference 14(2), 201-208.

208 STED 2025, Trebinje, June, 12-15, 2025. Republic of Srpska, B&H

consumption, and network traffic influence the overall efficiency of storage solutions in React

Native applications.

ACKNOWLEDGMENT

This research was supported by the Science Fund of the Republic of Serbia, PROMIS, Grant

no. 10916, German-Serbian Collocation Dictionary for German Language Learning and Teaching

– DeSKoll. Also, by the Ministry of Science, Technological Development and Innovation of the

Republic of Serbia, and these results are parts of the Grant No. 451-03-136/2025-03/200132, with
University of Kragujevac - Faculty of Technical Sciences Čačak.

DECLARATIONS OF INTEREST STATEMENT

The authors affirm that there are no conflicts of interest to declare in relation to the research

presented in this paper.

LITERATURE

Alsaid, M. A. M. M., Ahmed, T. M., Jan, S., Khan, F. Q., & Khattak, A. U. (2021). A Comparative

Analysis of Mobile Application Development Approaches: Mobile Application Development

Approaches. Proceedings of the Pakistan Academy of Sciences: a. Physical and

computational sciences, 58(1), 35-45.
Andersson, T. (2018). Analysis and quantitative comparison of storage, management, and

scalability of data in Core Data system in relation to Realm.

Bhosale, S. T., Patil, T., & Patil, P. (2015). Sqlite: Light database system. Int. J. Comput. Sci. Mob.

Comput, 44(4), 882-885.

Cobley, P., & Geneste, G. (2022). Realm. In Mobile Forensics–The File Format Handbook:

Common File Formats and File Systems Used in Mobile Devices (pp. 181-221). Cham:

Springer International Publishing.

Danielsson, W. (2016). React Native application development: A comparison between native

Android and React Native.

DeSKoll – German-Serbian Collocation Dictionary for German Language Learning and Teaching.

(2025). Retrieved May 25, 2025, from https://deskoll-dictionary.kg.ac.rs/
Eisenman, B. (2015). Learning react native: Building native mobile apps with JavaScript. "

O'Reilly Media, Inc.".

Gaffney, K. P., Prammer, M., Brasfield, L., Hipp, D. R., Kennedy, D., & Patel, J. M. (2022).

SQLite: past, present, and future. Proceedings of the VLDB Endowment, 15(12), 3535-3547.

Huynh, C. (2023). MealPointer Mobile Application.

Kreibich, J. (2010). Using SQLite. " O'Reilly Media, Inc.".

OPTED-Dictionary – The Online Plain Text English Dictionary. (2025). Retrieved May 25, 2025,

from https://www.kaggle.com/datasets/dfydata/the-online-plain-text-english-dictionary-

opted/data

React Conf (Ohjaaja). (2024). React Conf Keynote (Day 2) [Video recording]. Retrieved May 22,

2025, from https://www.youtube.com/watch?v=Q5SMmKb7qVI

React Native – Native Components. (2025). Retrieved May 23, 2025, from
https://reactnative.dev/docs/intro-react-native-components

Saarikoski, A. (2025). Expo-sovelluskehyksen hyödyntäminen React Native-sovelluskehityksessä.

TinyBase – A reactive data store & sync engine. Retrieved May 25, 2025, from

https://tinybase.org/

Van, H. (2020). Building a universal application with React and React Native.

https://deskoll-dictionary.kg.ac.rs/
https://www.kaggle.com/datasets/dfydata/the-online-plain-text-english-dictionary-opted/data
https://www.kaggle.com/datasets/dfydata/the-online-plain-text-english-dictionary-opted/data
https://www.youtube.com/watch?v=Q5SMmKb7qVI
https://reactnative.dev/docs/intro-react-native-components
https://tinybase.org/

