ORIGINAL SCIENTIFIC PAPER Submitted: 22.08.2025.
DOI: 10.63395/STEDConf14022025937S201 Accepted: 22.09.2025.

PERFORMANCE COMPARISON OF VARIOUS DATABASE TYPES IN
REACT NATIVE APPLICATIONS

cene

University of Kragujevac, Faculty of Technical Sciences Cacak, Svetog Save 65, 32102 Cacak,
Serbia, dijana.stojic@ftn.kg.ac.rs, dejan.vujicic@ftn.kg.ac.rs, djordje.damnjanovic@ftn.kg.ac.rs,
marina.milosevic@ftn.kg.ac.rs

Coresponding author: Dijana Stoji¢, University of Kragujevac, Faculty of Technical Sciences
Cacak, Svetog Save 65, 32102 Cacak, Serbia, dijana.stojic@ftn.kg.ac.rs

ABSTRACT

In the modern digital age, mobile devices have become an indispensable part of everyday life.
With the growing volume of data we handle daily, the speed of data loading and access becomes a
crucial factor for the efficient operation of mobile applications. Large datasets are becoming
increasingly common, such as, for example, the German collocation dictionary. Given that mobile
devices use different operating systems, such as Android and iOS, there is an increasing need for
tools that enable the development of cross-platform applications from a single codebase. React
Native, as a popular open-source framework, provides exactly this solution. This paper tested the
loading of data from the dictionary using React Native applications. This data loading was
performed in four ways: using AsyncStorage, SQLite, TinyBase, and Realm databases. A different
number of rows was loaded, and the loading speed was compared.

Keywords: Android, database, iOS, performance testing, React Native.

INTRODUCTION

In today's digital age, mobile devices have become an essential part of everyday life. With the
growing volume of data handled by mobile applications, performance — especially data loading
speed and access time — has become a crucial factor. Traditionally, developing mobile applications
required writing separate codebases for Android (using Java or Kotlin) and iOS (using Swift or
Objective-C), which significantly increased the time, cost, and complexity of development and
maintenance (Alsaid et al., 2021). This is overcome by using React Native, a widely used open-
source framework that enables the development of cross-platform applications from a single
codebase, thereby increasing development efficiency.

This study investigates how different types of databases affect performance within the React
Native environment, with a particular focus on working with large datasets such as a German
collocation dictionary. The experimental part of the work utilizes four different data management
technologies: AsyncStorage, SQLite, TinyBase, and Realm. As part of the comparison, the
performance of these solutions was analyzed depending on the size of the dataset, specifically the
number of rows, with particular focus on measuring the time required to load and display data
within the application.

The aim of the study is to determine which technology offers the best performance in the
context of React Native applications when working with local data and to provide guidelines for
choosing a database depending on the specific requirements of the project.

REACT NATIVE

React Native is an open-source framework developed by Meta (formerly Facebook) that
enables developers to build mobile applications for both iOS and Android platforms using a single
codebase. It is based on JavaScript and leverages the popular React library for building user
interfaces. This approach significantly reduces development time and cost, as there is no need to
maintain separate codebases for different platforms. One of the key features of React Native is its
ability to render components using native APIs, providing a look and feel that is consistent with

STED 2025, Trebinje, June, 12-15, 2025. Republic of Srpska, B&H 201


mailto:dejan.vujicic@ftn.kg.ac.rs
mailto:marina.milosevic@ftn.kg.ac.rs
mailto:dijana.stojic@ftn.kg.ac.rs

Stoji¢, D., et al. (2025). Performance comparison of various datebase types in react native
applications. STED Conference 14(2), 201-208.

platform-specific user experiences, as illustrated in Figure 1. Unlike hybrid frameworks that rely
on WebView, React Native applications run natively, which typically results in better performance
and smoother animations. React Native also supports a wide range of third-party libraries and
native modules, allowing developers to integrate device specific features like camera access, GPS,
and push notifications with ease. Its hot reloading functionality speeds up the development process
by allowing developers to see changes in real time without rebuilding the entire app. Overall, React
Native is a powerful and flexible solution for cross-platform mobile development, making it a
popular choice among startups and large companies alike that aim to reach a broader audience with
a unified development effort (Eisenman, 2015).

Cat Cafe Menu

ViewGroup Cat Cafe Menu
v -
ImageView TextView b. Maru
.- Maru
Spot
Spot
u Pouncival
fied Pouncival Pouncival e —
&) Rum Tum Tugger Soa
g Tabby
U Tabby g T
una
u Tuna UIImageView UITextView , Mrs. Norris
° X
Mrs. Norris
L , UIView Choupette
Choupette

Figure 1. Examples of views used in Android and iOS applications (React Native — Native Components,
2025).

Expo is used for developing React Native applications. Expo has been actively involved in
the development of React Native from the very beginning. Expo released the first community
libraries just a few months after the release of React Native in 2015. In the same year, Expo
developed the React Native Directory — a directory where React Native libraries can be searched
and explored.

In 2016, Expo participated in organizing the first React Conf event and was the first
independent developer community to support the release of a React Native version. Expo helped
add async functions to React Native as well as update the new architecture in the open-source
project (Saarikoski, 2025).

In 2024, Expo became the first official React Native framework for application development
(React Conf, 2024).

Expo is a toolchain built around React Native to help developers start their projects quickly.
Expo provides a set of tools and services to develop, build, deploy, test or even run simulators on
the specific platform from the same codebase. Specifically, it offers a collection of ready solutions
such as device accelerometer, camera, notifications, geolocation, etc. (Van, 2020).

STORAGE SYSTEMS AND DATABASES

AsyncStorage is a local data storage system used in React Native applications. It allows
developers to store data on the user’s device in the form of key-value pairs. The storage
mechanism is asynchronous, meaning that data operations such as saving or retrieving run in the
background without interrupting the main execution thread of the application. This contributes to
better app performance and a smoother user experience (Huynh, 2023).

Stored data in AsyncStorage remains persistent across app restarts, making it suitable for
maintaining state, user preferences, session tokens, or other small pieces of data that need to be
retained between uses. However, it's important to note that AsyncStorage does not encrypt data,
which makes it easily accessible but also raises security concerns for sensitive information.

202 STED 2025, Trebinje, June, 12-15, 2025. Republic of Srpska, B&H



Stoji¢, D., et al. (2025). Performance comparison of various datebase types in react native
applications. STED Conference 14(2), 201-208.

Due to its simplicity and ease of use, AsyncStorage is often chosen for basic offline data
persistence in React Native apps, particularly when working with smaller datasets that do not
require complex querying or relational structures.

SQLite is a lightweight, relational database engine commonly used in mobile applications for
local data storage. In React Native, SQLite allows apps to store structured data directly on the
device in a persistent and efficient way. It uses SQL queries to create, read, update, and delete data
within local database files (Gaffney, 2022).

This approach is especially useful for applications that require managing moderate amounts
of data offline, such as note-taking apps, inventories, or personal information managers. SQLite
supports complex queries and relationships between data, providing more flexibility than simple
key-value storage systems (Kreibich, 2010).

Because the database is stored locally, React Native apps using SQLite can operate without
an internet connection, ensuring data availability at all times. Although it may have some
limitations regarding concurrent writes and schema migrations, SQLite remains a reliable solution
for many mobile apps needing fast and persistent local storage (Bhosale, 2015).

TinyBase is a small and fast database library for managing state and data in JavaScript apps,
including React Native. It provides a flexible in-memory data store focused on ease of use and
performance, rather than persistent storage (Danielsson, 2016).

In React Native, TinyBase helps efficiently handle complex state and relational data during
app runtime. It supports tables, records, and relationships, similar to relational databases but
without slow disk operations.

Its lightweight design and simple API make it easy to integrate with React Native’s
component lifecycle, enabling automatic updates and smooth rendering when data changes.

While TinyBase doesn’t offer built-in persistent storage, it can be used alongside tools like
AsyncStorage or SQLite to save and load data as needed. Overall, TinyBase is a useful tool for
managing app state and complex data with high performance (TinyBase, 2025).

Realm is a mobile database built for modern apps, offering an easy-to-use, high-performance,
and offline-first solution. Unlike traditional databases, it uses an object-oriented model, letting
developers work with native objects instead of SQL queries (Danielsson, 2016).

In React Native, Realm efficiently manages complex data locally and supports reactive
updates, ensuring Ul components sync automatically when data changes. It stores data in a zero-
copy format, improving read/write speeds, and offers features like encryption, synchronization
with backend servers, and fine-grained permissions.

Realm handles complex relationships and queries without losing performance, integrates well
with React Native’s lifecycle, and supports transactions for data integrity. Although it requires
setup and can increase app size, its benefits make it ideal for data-heavy mobile apps (Andersson,
2018).

In summary, Realm provides a powerful, scalable, and secure local database with real-time
updates and synchronization, perfect for modern mobile development (Cobley, 2022).

IMPLEMENTATION

The motivation for testing various mobile database solutions stemmed from the development
of a German collocation dictionary within the scope of the DeSKoll project (DeSKoll, 2025). To
streamline development across platforms and avoid maintaining separate codebases for i0OS and
Android, the React Native framework was selected.

For experimental purposes, a simplified English word dictionary was utilized (OPTED-
Dictionary, 2025), consisting of four columns: Word, Count, POS (part of speech), and Definition.
In order to reduce complexity during testing, only the Word and Definition columns were
considered, while the specific semantic content of the data was not of significance.

Datasets containing 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000, and 100000 rows
were loaded using four distinct methods. The upper limit of 100,000 rows was chosen based on the
projected maximum size of the final collocation dictionary. The dictionary will have significantly
fewer rows but more columns, so these measurements will be relevant.

STED 2025, Trebinje, June, 12-15, 2025. Republic of Srpska, B&H 203



Stoji¢, D., et al. (2025). Performance comparison of various datebase types in react native
applications. STED Conference 14(2), 201-208.

Identical user interface layouts were developed for each of the four data loading approaches,
ensuring consistency across test scenarios.

All tests were performed in the Expo Go environment, utilizing an iPhone simulator and an
Android emulator to ensure cross-platform compatibility. The layouts used for testing are
presented in Figure 2.

Android Emulator - Medium_Phone:5554
9010 @ L 7T]

—
LT o

1000 words « Loaded in 6ms

T

1000 words + Loaded in 5ms

Aard-vark

Aard-wolf

Aaronic

Aaronical
Periainifg

() (b)
Figure 2. Application layout in React Native for testing on simulator for (a) i0S, (b) Android.

The first loading method uses AsyncStorage for local storage and display of the dictionary.
When the application starts, the useEffect hook is triggered, performance measurement begins, and
the app attempts to load the dictionary from memory. If data exists, it is parsed and set to state,
then displayed using a FlatList. The data flow diagram from the AsyncStorage local database to the
screen is shown in Figure 3.

AsyncStorage.getitem() setState().update Re-render FlatList

“‘m 1v one m >
(Device Storage) u 1 eState dict: Dict[] (FlatLlst)

Key: '@dictionary_list' o tion loadTime: number Display dictionary data

Figure 3. Data flow: AsyncStorage = Screen (React Native).

In the second approach, an SQLite database is used for storing and displaying the dictionary.
Data from the SQLite database is loaded using the expo-sqlite API through the useSQLiteContext
hook. When the screen is focused, the loadData function is triggered, executing the SQL query
SELECT * FROM Dictionary to retrieve all entries from the dictionary table. The query results are
stored in the component’s state (data), which automatically triggers the rendering of the list. The
time taken to load the data is measured using Date.now() and displayed to the user. The dictionary
is displayed using the FlatList component, which efficiently renders each word and its definition as
a list on the screen. The data flow diagram from the SQLite local database to the screen is shown in
Figure 4.

204 STED 2025, Trebinje, June, 12-15, 2025. Republic of Srpska, B&H



Stoji¢, D., et al. (2025). Performance comparison of various datebase types in react native
applications. STED Conference 14(2), 201-208.

SQL Query Process Data setState Render

React Component
loadData() Ul Component

g const [data,
function setData] . (FlatList)

SQLite Database Component State

Dictyonary table

useFocusEffect
Hook

(Device Storage) getAllAsync()

Array of objects Display list to user

Figure 4. Data flow: SQLite = Screen (React Native).

The third approach combines an SQLite database with the TinyBase library for efficient data
management and display. At the start, the Dictionary.db database is copied into the app's working
directory. After that, the SQLiteProvider enables access to the database using expo-sqlite. The
DatalLoader component executes the SQL query SELECT Word, Definition FROM Dictionary to
retrieve all words and their definitions. The resulting data is then written into the TinyBase store,
where each word is used as a row ID and the definition as a cell. Once the data is loaded, the
TinyBase context (TinyBaseProvider) wraps the entire app to allow access to the data via TinyBase
hooks. The Dictionary component uses useRowlds to get all word keys, while Dictionaryltem uses
useCell to display the definition for each word. The data is rendered using FlatList, allowing for
performant and dynamic display of dictionary items within the user interface. The data flow
diagram from the SQLite local database throw TinyBase library to the screen is shown in Figure 5.

SQlL Query Load Data setRow()

SQlite Database SQlite Provider Dataloader
Dictionary.db » useSQLiteContext . Component
(Device Storage) getAllAsync() SQL —-> TinyBase

TinyBase Store

createStore()
setRow() data

Wrap Store

Jusecell UseRowlds

Distionaryltem

Dictionary TinyBase Provider

useRowlds hook ‘ Context wrapper
FlatList IOHOURs

useCell hock
Individual item

Figure 5. Data flow: SQLite - TinyBase = Screen (React Native).

The fourth method uses Realm, a high-performance local database, for storing and displaying
the dictionary within the React Native application. The loading process starts by checking whether
the Realm file (Dictionary.realm) exists in the local documentDirectory folder. If it does not exist,
the database is automatically copied from the assets directory using the expo-file-system and expo-
asset libraries. This process is automated in the copyRealmFilelfNeeded method, enabling the use
of a pre-populated database. After copying, the application uses the RealmService class to open the
database and initialize the schema (DictionarySchema). The data is then retrieved directly from the
database and displayed using the FlatList component. The data flow diagram from the Realm local
database to the screen is shown in Figure 6.

Query - getAllWorlds() Process Data — Array.from() setWords(data) Render

ice React Component
.objécts() useEffect/

Realm Database Component State Ul Component

(words[]) . (FlatList)
Array of data

Dictyonary.realm
i Database useState Hook

operations DictionaryScreen

Figure 6. Data flow: Realm - Screen (React Native).

Display list to user

(Device Storage)

RESULTS AND DISCUSSION

To determine the most suitable solution for local data storage in mobile applications built
with the React Native framework, a comprehensive performance evaluation was carried out
involving four widely used database systems: SQLite, AsyncStorage, TinyBase, and Realm. The
goal was to assess efficiency in handling different data set sizes, with a focus on load speed.

The performance tests were conducted on both an iOS simulator and an Android emulator,
providing cross-platform insights into how each database behaves under similar conditions. The

STED 2025, Trebinje, June, 12-15, 2025. Republic of Srpska, B&H 205



Stoji¢, D., et al. (2025). Performance comparison of various datebase types in react native
applications. STED Conference 14(2), 201-208.

evaluation involved loading predefined datasets of increasing sizes, specifically: 100, 200, 500,
1000, 2000, 5000, 10000, 20000, 50000, and 100000 records. These datasets were designed to
simulate real-world application usage, ranging from simple to complex data structures.

For each test scenario, the time required to load the dataset into memory was measured and
recorded in milliseconds (ms). To ensure reliability and minimize the impact of potential
background activity or fluctuations in the simulator/emulator environments, each test was repeated
multiple times, and average values were calculated.

The numerical results of testing on the iOS simulator are shown in Table 1, and the graphic
representation is presented in Figure 6.

Table 1. Measurement of the data load time in i10OS simulator

Inputs SQLite (ms) AsyncStorage (ms) TinyBase (ms) Realm (ms)
100 36 3 23 1
200 41 3 37 2
500 47 5 50 3
1000 55 6 102 4
2000 59 6 191 9
5000 61 11 302 20
10000 68 18 352 46
20000 88 86 380 84
50000 141 238 1781 226
100000 224 437 3364 466

Data load time

o 2000
E 1500
1000
500 -
0 e
100 200 500 1000 2000 5000 10000 20000 50000 100000
Number of inputs
e—=SQlite e===pAsyncStorage e===TinyBase Realm

Figure 6. Measurement of the data load time in iOS simulator.

Similar results were obtained during testing on both the Android emulator and the iOS
simulator, indicating consistent performance across platforms. The numerical results of testing on

the Android emulator are shown in Table 2, and the graphical representation is presented in Figure
7.

Table2. Measurement of the data load time in Android emulator.

Inputs SQLite (ms) AsyncStorage (ms) TinyBase (ms) Realm (ms)
100 40 5 28 1
200 45 6 41 2
500 51 7 55 3
1000 62 8 113 5
2000 68 8 283 10
5000 82 11 319 21
10000 103 17 384 50
20000 148 143 434 86
50000 273 382 1783 224
100000 490 621 3526 578

206 STED 2025, Trebinje, June, 12-15, 2025. Republic of Srpska, B&H



Stoji¢, D., et al. (2025). Performance comparison of various datebase types in react native
applications. STED Conference 14(2), 201-208.

SQLite provides stable performance on both platforms. The loading times of small amounts
of data are slow compared to other databases, but the growth is relatively uniform with the increase
in the amount of data. this indicates stable and predictable performance.

AsyncStorage is very efficient for small to medium datasets, but not suitable for larger
amounts of data. The responses are extremely fast for small amounts of data, however, after 20,000
entries there is a sudden spike, which indicates exponential growth and loss of efficiency with
larger datasets.

Data load time

—_—

100 200 500 1000 2000 5000 10000 20000 50000 100000

Number of inputs

—C ) te —e—f\syncStorage e TinyBase Realm

Figure 7. Measurement of the data load time in Android emulator.

TinyBase is not optimized for working with large datasets and shows extremely poor
performance on both platforms. The performance is significantly weaker even with small datasets,
and at 1,000 entries the growth is large, while at 20,000 entries it is exponential, which makes it
unusable for large amounts of data.

Realm has the best performance for small amounts of data, however, performance degrades
as the dataset grows. The growth is relatively linear up to 10,000 entries, after which there is a
noticeable slowdown.

From the obtained results it can be concluded that Realm and AsyncStorage are the fastest for
small datasets. The most stable performance was shown when using SQLite, with a uniform and
predictable increase in loading time. The worst performance was obtained with TinyBase, with
sudden exponential growth and very long times for large datasets.

CONCLUSIONS

The comparison of different types of data storage in React Native applications shows that the
optimal choice of storage is highly context-dependent. There is no single solution that works best
in every situation.

The choice depends on the specific requirements of the application, the expected data
volumes, and the targeted platforms. For applications with predictable data sizes up to 10,000
entries, AsyncStorage represents an optimal choice due to its simplicity and good performance. For
applications that require scalability and handling large amounts of data, SQLite is the only solution
that provides consistent performance across all scenarios. Realm can be used in specific cases
where its advantages for smaller data volumes can be leveraged, but it requires careful testing and
monitoring. TinyBase is not recommended for production applications due to consistently poor
performance on both platforms.

In summary, developers should carefully evaluate their application’s requirements—such as
data size and complexity, need for local storage, performance, and implementation simplicity — to
choose the most appropriate solution.

Further studies should concentrate on evaluating performance using real-world datasets and
diverse operation types, along with examining how factors like memory usage, battery

STED 2025, Trebinje, June, 12-15, 2025. Republic of Srpska, B&H 207



Stoji¢, D., et al. (2025). Performance comparison of various datebase types in react native
applications. STED Conference 14(2), 201-208.

consumption, and network traffic influence the overall efficiency of storage solutions in React
Native applications.

ACKNOWLEDGMENT

This research was supported by the Science Fund of the Republic of Serbia, PROMIS, Grant
no. 10916, German-Serbian Collocation Dictionary for German Language Learning and Teaching
— DeSKoll. Also, by the Ministry of Science, Technological Development and Innovation of the
Republic of Serbia, and these results are parts of the Grant No. 451-03-136/2025-03/200132, with
University of Kragujevac - Faculty of Technical Sciences Cagak.

DECLARATIONS OF INTEREST STATEMENT
The authors affirm that there are no conflicts of interest to declare in relation to the research
presented in this paper.

LITERATURE

Alsaid, M. A. M. M., Ahmed, T. M., Jan, S., Khan, F. Q., & Khattak, A. U. (2021). A Comparative
Analysis of Mobile Application Development Approaches: Mobile Application Development
Approaches. Proceedings of the Pakistan Academy of Sciences: a. Physical and
computational sciences, 58(1), 35-45.

Andersson, T. (2018). Analysis and quantitative comparison of storage, management, and
scalability of data in Core Data system in relation to Realm.

Bhosale, S. T., Patil, T., & Patil, P. (2015). Sqlite: Light database system. Int. J. Comput. Sci. Mob.
Comput, 44(4), 882-885.

Cobley, P., & Geneste, G. (2022). Realm. In Mobile Forensics—The File Format Handbook:
Common File Formats and File Systems Used in Mobile Devices (pp. 181-221). Cham:
Springer International Publishing.

Danielsson, W. (2016). React Native application development: A comparison between native
Android and React Native.

DeSKoll — German-Serbian Collocation Dictionary for German Language Learning and Teaching.
(2025). Retrieved May 25, 2025, from https://deskoll-dictionary.kg.ac.rs/

Eisenman, B. (2015). Learning react native: Building native mobile apps with JavaScript. "
O'Reilly Media, Inc.".

Gaffney, K. P., Prammer, M., Brasfield, L., Hipp, D. R., Kennedy, D., & Patel, J. M. (2022).
SQLite: past, present, and future. Proceedings of the VLDB Endowment, 15(12), 3535-3547.

Huynh, C. (2023). MealPointer Mobile Application.

Kreibich, J. (2010). Using SQLite. " O'Reilly Media, Inc.".

OPTED-Dictionary — The Online Plain Text English Dictionary. (2025). Retrieved May 25, 2025,
from https://www.kaggle.com/datasets/dfydata/the-online-plain-text-english-dictionary-
opted/data

React Conf (Ohjaaja). (2024). React Conf Keynote (Day 2) [Video recording]. Retrieved May 22,
2025, from https://www.youtube.com/watch?v=0Q5SMmKb7qVI

React Native — Native Components. (2025). Retrieved May 23, 2025, from
https://reactnative.dev/docs/intro-react-native-components

Saarikoski, A. (2025). Expo-sovelluskehyksen hyddyntdminen React Native-sovelluskehityksessa.

TinyBase — Areactive data store & syncengine. Retrieved May 25, 2025, from
https://tinybase.org/

Van, H. (2020). Building a universal application with React and React Native.

208 STED 2025, Trebinje, June, 12-15, 2025. Republic of Srpska, B&H


https://deskoll-dictionary.kg.ac.rs/
https://www.kaggle.com/datasets/dfydata/the-online-plain-text-english-dictionary-opted/data
https://www.kaggle.com/datasets/dfydata/the-online-plain-text-english-dictionary-opted/data
https://www.youtube.com/watch?v=Q5SMmKb7qVI
https://reactnative.dev/docs/intro-react-native-components
https://tinybase.org/

