Home Proceedings Organization Program News Contact
PDF download
Cite article
Share options
Informations, rights and permissions
Issue image
Vol 14, 2025
Pages: 311 - 322
Original scientific paper
Engineering, Technology and Materials Editor: Darjana Sredić
See full issue

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Metrics and citations
Abstract views: 33
PDF Downloads: 15
Google scholar: See link
Article content
  1. Abstract
  2. Disclaimer
Received: 21.08.2025. >> Accepted: 12.09.2025. >> Published: 21.11.2025. Original scientific paper Engineering, Technology and Materials Editor: Darjana Sredić

SURFACE MODIFICATION TECHNIQUES FOR DENTAL IMPLANTS

By
Darina Dupláková ,
Darina Dupláková
Contact Darina Dupláková

Faculty of Manufacturing Technologies with a Seat in Presov, Technical University of Košice , Košice , Slovakia

Samuel Mikuláško ,
Samuel Mikuláško

Faculty of Manufacturing Technologies with a seat in Presov, Technical University of Košice , Košice , Slovakia

Ján Duplák ,
Ján Duplák

Faculty of Manufacturing Technologies with a seat in Presov, Technical University of Košice , Košice , Slovakia

Maryna Yeromina ,
Maryna Yeromina

Faculty of Manufacturing Technologies with a seat in Presov, Technical University of Košice , Košice , Slovakia

Róbert Pyteľ
Róbert Pyteľ

Faculty of Manufacturing Technologies with a seat in Presov, Technical University of Košice , Košice , Slovakia

Abstract

Surface finishing of dental materials significantly influence their functional properties, biological compatibility, and long-term clinical performance. Given the diversity of materials used—including ceramics, metals, polymers, and bioactive composites—each material type necessitates a tailored approach to surface layer modification. This review focuses on the classification and analysis of primary surface finishing methodologies applied to dental materials. Mechanical techniques aimed at increasing micro-roughness are described alongside chemical methods targeting surface property alteration. Physical processes such as plasma activation and laser texturing are also examined. Attention is dedicated to treatments enhancing surface bioactivity, including the deposition of bioactive coatings and chemical surface functionalization. The study emphasizes the correlation between applied surface modification techniques, resultant changes in surface topography, and biological responses within the oral environment. Moreover, the necessity of customizing technological approaches based on specific clinical requirements is underscored. The insights gained provide guidance for the optimal selection of surface finishing according to material type and intended clinical application

References

Aita, H., Hori, N., Takeuchi, M., Suzuki, T., Anpo, M., & Ogawa, T. (2009). Photofunctionalization of titanium implants with ultraviolet light for rapid osseointegration. Science Translational Medicine, 1(6), 6–4.
Albrektsson, T., Brånemark, P. I., Hansson, H. A., & Lindström, J. (1981). Osseointegrated titanium implants: Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthopaedica Scandinavica, 52(2), 155–170.
Albrektsson, T., & Johansson, C. (2001). Osteoinduction, osteoconduction and osseointegration. European Spine Journal, 10(Suppl. 2), 96–101.
Anil, S., Anand, P. S., Alghamdi, H., & Jansen, J. A. (2011). Laser microtexturing of titanium surfaces for enhanced bone integration: A systematic review. Clinical Oral Implants Research, 22(12), 1301–1310.
Barrère, F., Blitterswijk, C. A., & Groot, K. (2003). Bone regeneration: Molecular and cellular interactions with calcium phosphate ceramics. International Journal of Nanomedicine, 6(1), 317–332.
Buser, D., Schenk, R. K., Steinemann, S., Fiorellini, J. P., Fox, C. H., & Stich, H. (1991). Influence of surface characteristics on bone integration of titanium implants: A histomorphometric study in miniature pigs. Journal of Biomedical Materials Research, 25(7), 889–902.
Canullo, L., Iannello, G., & Penarrocha, D. (2017). A randomized controlled trial on the influence of surface treatment on the crestal bone level of implants: 1-year results. Clinical Oral Implants Research, 28(5), 494–500.
Canullo, L., Iurlaro, G., Penarrocha, D., Penarrocha, M., & Wang, H. L. (2017). Effect of surface hydrophilicity on peri-implant soft tissue healing. Clinical Oral Implants Research, 28(11), 1400–1406.
Chrcanovic, B. R., Albrektsson, T., & Wennerberg, A. (2015). Factors influencing early dental implant failures. Journal of Dental Research, 94(9), 995–1002.
Deligianni, D. D., Katsala, N. D., Ladas, S. D., Sotiropoulou, D. I., Amedee, J., & Missirlis, Y. F. (2001). Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and protein adsorption. Biomaterials, 22(11), 1241–1251.
Dental Surgery Channel. (2019). Basics of dental implant surface treatments. https://hiossen.com/dental-implants/basics-of-dental-implant-surface-treatments//.
Dorozhkin, S. V. (2010). Calcium orthophosphates: Applications in nature, biology, and medicine. Materials, 3(10), 1975–2045.
Geetha, M., Singh, A. K., Asokamani, R., & Gogia, A. K. (2009). Ti based biomaterials, the ultimate choice for orthopaedic implants – A review. Progress in Materials Science, 54(3), 397–425.
Gittens, R. A., Olivares-Navarrete, R., Schwartz, Z., & Boyan, B. D. (2014). Implant osseointegration and the role of microroughness and nanostructures: Lessons for spine implants. Acta Biomaterialia, 10(8), 3363–3371.
Gomez-Florit, M., Fernandez-Calderon, M. C., Gil, F. J., & Rodriguez, D. (2021). Antimicrobial strategies in dental implant surfaces: A review. International Journal of Molecular Sciences, 22(3), 1090.
Gomez-Florit, M., Marchante, M., Perez, R. A., Gil, F. J., & Ramis, J. M. (2021). Multifunctional coatings for titanium dental implants: A review. Dental Materials, 37(1), 131–148.
Gugala, Z., Wang, Y., Bratton, B., Willett, N., Franceschi, R. T., Gerstenfeld, L. C., & Einhorn, T. A. (2014). Antibacterial effects of silver ion implantation in titanium dental implants. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 102(2), 397–406.
Hench, L. L. (2006). The story of Bioglass®. Journal of Materials Science: Materials in Medicine, 17(11), 967–978.
Huang, H. H., Chang, E., Hsu, S. L., Liu, Y. T., Chen, Y. Y., & Liu, C. H. (2007). Effects of ion implantation on titanium implants for improving bioactivity. Materials Science and Engineering, C 27(5–8), 1031–1037.
Kim, K. H., Kim, Y. M., Han, D. W., Kim, K. H., Chung, C. P., & Kim, H. E. (2012). Enhancement of osteoblast functions by calcium and phosphorus ion implantation on titanium surfaces. Surface and Coatings Technology, 206(18), 3807–3813.
Kokubo, T., & Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 27(15), 2907–2915.
Lee, J. H., Jang, J. H., Ryu, H. H., Jeong, S. H., & Kim, H. W. (2015). Sol–gel derived hydroxyapatite coating on titanium implants: In vitro and in vivo evaluation. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 103(6), 1241–1250.
Lee, J. H., Kim, H. E., Jang, J. H., & Kim, H. W. (2005). Effects of oxygen plasma treatment on titanium implants. Journal of Biomedical Materials Research Part A, 73(4), 442–448.
Lu, Y., Huang, L., & Zhou, X. (2023). Additive manufacturing of titanium-based scaffolds for osseointegration: Surface modifications and biological evaluations. ACS Biomaterials Science & Engineering, 9(8), 4089–4104.
Macak, J. M., Tsuchiya, H., Ghicov, A., Yasuda, K., Hahn, R., Bauer, S., & Schmuki, P. (2007). TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Current Opinion in Solid State and Materials Science, 11(1–2), 3–18.
Mangano, F., Chambrone, L., Noort, R., Miller, C., Hatton, P., & Mangano, C. (2014). Direct metal laser sintering titanium dental implants: a review of the current literature. International Journal of Biomaterials, 2014(1), 461534.
Nobel Biocare. (n.d.). Dental implant surface treatments – What you need to know. Retrieved December 10, 2022, from https://www.nobelbiocare.com/en-int/blog/science-first/dental-implant-surface-treatments-what-you-need-to-know-0.
Ogawa, T., Aita, H., & Ueno, T. (2010). Ultraviolet photofunctionalization of titanium to enhance osseointegration. Frontiers of Oral Biology, 15, 53–59.
Park, J. B., & Lakes, R. S. (2007). Biomaterials: An introduction. Springer.
Popat, K. C., Leoni, L., Grimes, C. A., & Desai, T. A. (2007). Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials, 28(21), 3188–3197.
Ruoslahti, E. (1996). RGD and other recognition sequences for integrins. Annual Review of Cell and Developmental Biology, 12, 697–715.
Rupp, F., Scheideler, L., Olshanska, N., Wild, M., Wieland, M., & Geis-Gerstorfer, J. (2006). Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces. Journal of Biomedical Materials Research Part A, 76(2), 323–334.
Scarano, A., Carlo, F., Quaranta, M., & Piattelli, A. (2003). Bone response to laser-treated titanium implants: An experimental study in rabbits. Journal of Oral Implantology, 29(3), 109–114.
Scarano, A., Degidi, M., Perrotti, V., & Piattelli, A. (2006). Osteoblast proliferation on laser microgrooved titanium surfaces: An in vitro study. Journal of Oral Implantology, 32(2), 59 65.
Scarano, A., Degidi, M., Santinelli, A., Piattelli, A., & Iezzi, G. (2003). Osteoblast adhesion on different titanium implant surfaces: An in vitro study. Journal of Oral Implantology, 29(2), 63–70.
Schliephake, H. (2012). Biomaterials and growth factors for bone regeneration: Current status and future developments. The International Journal of Oral & Maxillofacial Implants, 27(Suppl), 49–59.
Schliephake, H., Scharnweber, D., Dard, M., Hissnauer, T., Neffe, A., Schmidt, C., & Breme, J. (2009). Biologically active implant surfaces. Biomaterials, 30(28), 5321–5335.
Schliephake, H., Scharnweber, D., Dard, M., & Schumacher, M. (2009). Growth factors and implant surfaces. European Cells and Materials, 17, 84–99.
Schliephake, H., Shabrawi, Y., Schwarz, F., & Scharnweber, D. (2009). Biofunctionalized implant surfaces: A review of methods and mechanisms. Clinical Oral Implants Research, 20(9), 91–103.
Schüpbach, P., Glauser, R., Ramseier, C. A., & Hämmerle, C. H. F. (2005). The role of surface topography for osseointegration of dental implants. Clinical Oral Implants Research, 16(6), 618–627.
Sul, Y. T., Johansson, C. B., Petronis, S., Krozer, A., Jeong, Y., Wennerberg, A., & Albrektsson, T. (2002). The electrochemical oxide growth behavior on titanium in acid and alkaline electrolytes. Biomaterials, 23(16), 491–501.
Webster, T. J., Ergun, C., Doremus, R. H., Siegel, R. W., & Bizios, R. (2000). Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials, 21(17), 1803–1810.
Wennerberg, A., & Albrektsson, T. (2009). Effects of titanium surface topography on bone integration: A systematic review. Clinical Oral Implants Research, 20(Suppl. 4), 172–184.
Yong, K., Lin, D., Qian, M., & Huang, Z. (2013). Effects of laser surface treatment on the properties of titanium implants: A review. Applied Surface Science, 283, 212–218.
Yoshinari, M., Okuda, K., & Hayakawa, T. (2002). Ammonia plasma treatment of titanium implants enhances osteoblastic differentiation. Biomaterials, 23(14), 2947–2955.
Zhang, H., Huang, W., & Deng, L. (2021). Bioactive surface modification of titanium-based biomaterials with polydopamine and its derivatives: A review. ACS Applied Materials & Interfaces, 13(40), 46521–46542.
Zhao, L., Mei, S., Chu, P. K., Zhang, Y., & Wu, Z. (2010). The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions. Biomaterials, 31(19), 5072–5082.

The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.