In this study, we investigate the ultrafast dynamics of free electrons in skin-like tissue media, stimulated by laser pulses with durations between 50 fs and 100 fs. Our analysis is based on a rate-equation approach for the evolution of free electron density under different laser pulse durations. The simulated electron densities are then used to calculate the time-dependent change in reflectivity, , via a Drude-based dielectric function model and Fresnel equations for normal incidence. This enables us to assess the transient optical properties of tissue equivalents during and after ultrafast electronic excitation. The results highlight characteristic thresholds for carrier generation and show how pulse parameters influence the magnitude and temporal profile of . The presented approach offers a framework for understanding and predicting ultrafast reflectivity changes in tissue-like media, which can be useful for laser-based diagnostics, ultrafast imaging, and controlled photothermal treatments.
References
Bonse, J., Kirner, S. V., & Krüger, J. (2020). Laser-induced periodic surface structures (LIPSS). Handbook of laser micro-and nano-engineering, 1-59.
Carrasco-García, I., Vadillo, J. M., & Laserna, J. J. (2015). Visualization of surface transformations during laser ablation of solids by femtosecond pump–probe time-resolved microscopy. Spectrochimica Acta Part B: Atomic Spectroscopy, 113, 30–36.
Couairon, A., & Mysyrowicz, A. (2007). Femtosecond filamentation in transparent media. Physics Reports, 441(2–4), 47–189.
Delone, N. B., & Krainov, V. P. (2000). Multiphoton processes in atoms. Springer.
Denk, W., Strickler, J. H., & Webb, W. W. (1990). Two-photon laser scanning fluorescence microscopy. Science, 248(4951), 73–76.
García-Lechuga, M., Haahr-Lillevang, L., Siegel, J., Balling, P., Guizard, S., & Solis, J. (2017). Simultaneous time-space resolved reflectivity and interferometric measurements of dielectrics excited with femtosecond laser pulses. Physical Review B, 95(21), 214114.
Golik, S. S., Ilyin, A. A., Babiy, M. Y., Biryukova, Y. S., Lisitsa, V. V., & Bukin, O. A. (2015). Determination of iron in water solution by time-resolved femtosecond laser-induced breakdown spectroscopy. Plasma Science and Technology, 17(11), 975.
Inogamov, N. A., Petrov, Y. V., Khokhlov, V. A., & Zhakhovskii, V. V. (2020). Laser ablation: physical concepts and applications. High Temperature, 58(4), 632–646.
Krüger, J., Wang, J., & Kautek, W. (2020). Ultrafast laser processing of transparent materials. Appl. Surf. Sci, 506, 144998.
Mareev, E. I., Asharchuk, N. M., Rovenko, V. V., & Yusupov, V. I. (2024). Dynamics of Water Transition to the Supercritical State under Ultrafast Heating with Ultrashort Laser Pulses. Russian Journal of Physical Chemistry B, 18(8), 1905–1915.
Qiu, J., Jia, W., Lin, C., & Hirao, K. (2014). Ultrafast free carrier dynamics in dielectrics. Opt. Express, 22(19), 23374 23381.
Rethfeld, B. (2004). Unified model for the free electron avalanche in laser irradiated dielectrics. Phys. Rev. Lett, 92(18), 187401.
Rethfeld, B., Sokolowski-Tinten, K., Linde, D., & Anisimov, S. I. (2004). Timescales in the response of materials to femtosecond laser excitation. Applied Physics A, 79, 767–769.
Sokolowski-Tinten, K., & Linde, D. (2000). Generation of dense electron–hole plasmas in silicon. Physical Review B, 61(4), 2643–2650.
Stuart, B. C., Feit, M. D., Herman, S., Rubenchik, A. M., Shore, B. W., & Perry, M. D. (1996). Optical ablation by high-power short-pulse lasers. Journal of the Optical Society of America B, 13(2), 459–468.
Tirlapur, U., & König, K. (2002). Targeted transfection by femtosecond laser. Nature, 418(6895), 290 291.
Vogel, A., Linz, N., Freidank, S., & Paltauf, G. (2008). Femtosecond laser induced nanocavitation in water: Implications for optical breakdown threshold and cell surgery. Phys. Rev. Lett, 100(3), 038102.
Vogel, A., Noack, J., Hüttman, G., & Paltauf, G. (2005). Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl. Phys. B, 81(8), 1015 1047.